Elucidation of the stereocontrol mechanisms of the chemical and biosynthetic intramolecular Diels-Alder cycloaddition for the formation of bioactive decalins.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
18 Sep 2023
18 Sep 2023
Historique:
received:
02
07
2023
accepted:
12
09
2023
medline:
21
9
2023
pubmed:
21
9
2023
entrez:
21
9
2023
Statut:
epublish
Résumé
The intramolecular Diels-Alder reaction (IMDA) is a powerful method for regioselective and stereoselective construction of functionalised decalin skeletons, and the recent discovery of enzymes that catalyse IMDA cycloaddition in biosynthesis has generated considerable interest. This study focused on the role of the absolute configuration of the C-6 carbon of the substrate polyene in the stereocontrol of the IMDA reaction catalysed by Fsa2 and Phm7, which construct different enantiomeric decalin skeletons. Their enantiomeric precursor polyenes were synthesised and subjected to enzymatic or thermal IMDA reactions to isolate various diastereomeric decalines and determine their absolute configuration. Furthermore, density functional theory calculations were performed to elucidate the stereocontrol mechanism underlying the formation of decalin. The results showed that Fsa2 exhibits the same equisetin-type stereoselectivity for enantiomeric substrates regardless of the 6-methyl group configuration of the substrate, while Phm7 shows two types of stereoselectivity depending on the configuration of the 6-methyl group. We also found a unique stereochemistry-activity relationship in antibacterial activity for decalin diastereomers, including new derivatives. This study provides new insights into the stereoselectivity of DAase, which is important in the synthesis of natural product skeletons.
Identifiants
pubmed: 37731829
doi: 10.1039/d3ra04406h
pii: d3ra04406h
pmc: PMC10508222
doi:
Types de publication
Journal Article
Langues
eng
Pagination
27828-27838Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
Organic Synth. 2019;96:528-585
pubmed: 32367897
Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22401-22410
pubmed: 34121297
Fungal Biol Biotechnol. 2022 Apr 29;9(1):9
pubmed: 35488322
Biochem Biophys Res Commun. 2015 May 1;460(2):210-5
pubmed: 25770422
J Nat Prod. 2014 Nov 26;77(11):2537-44
pubmed: 25351193
Org Biomol Chem. 2005 Jan 21;3(2):274-80
pubmed: 15632969
Bioorg Med Chem. 2008 Apr 15;16(8):4203-21
pubmed: 18334299
Chem Commun (Camb). 2017 Apr 25;53(34):4695-4697
pubmed: 28401214
Angew Chem Int Ed Engl. 2003 Jul 14;42(27):3078-115
pubmed: 12866094
Acc Chem Res. 2008 Feb;41(2):157-67
pubmed: 18186612
Chem Rev. 2017 Apr 26;117(8):5367-5388
pubmed: 28441874
Angew Chem Int Ed Engl. 2002 May 17;41(10):1668-98
pubmed: 19750686
Chemistry. 2013 Sep 23;19(39):13040-6
pubmed: 24038394
PLoS One. 2020 May 29;15(5):e0233485
pubmed: 32470050
J Antibiot (Tokyo). 2003 Oct;56(10):862-5
pubmed: 14700280
Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9754-9758
pubmed: 29972614
J Comput Chem. 2003 Apr 30;24(6):669-81
pubmed: 12666158
Nat Prod Rep. 2019 May 22;36(5):698-713
pubmed: 30311924
Org Lett. 2005 Sep 15;7(19):4111-2
pubmed: 16146364
Chemistry. 2019 May 17;25(28):6864-6877
pubmed: 30664302
Chem Sci. 2012 Jan 1;3(12):3378-3386
pubmed: 23227303
ACS Omega. 2021 May 06;6(19):12913-12922
pubmed: 34056443
Antimicrob Agents Chemother. 1974 Jun;5(6):634-9
pubmed: 15825417