Astrocytes evoke a robust IRF7-independent type I interferon response upon neurotropic viral infection.


Journal

Journal of neuroinflammation
ISSN: 1742-2094
Titre abrégé: J Neuroinflammation
Pays: England
ID NLM: 101222974

Informations de publication

Date de publication:
22 Sep 2023
Historique:
received: 02 05 2023
accepted: 06 09 2023
medline: 25 9 2023
pubmed: 22 9 2023
entrez: 22 9 2023
Statut: epublish

Résumé

Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.

Sections du résumé

BACKGROUND BACKGROUND
Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS.
METHODS METHODS
To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry.
RESULTS RESULTS
Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop.
CONCLUSION CONCLUSIONS
IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.

Identifiants

pubmed: 37737190
doi: 10.1186/s12974-023-02892-w
pii: 10.1186/s12974-023-02892-w
pmc: PMC10515022
doi:

Substances chimiques

Antibodies 0
Interferon Regulatory Factor-7 0
Interferon Type I 0
Irf7 protein, mouse 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

213

Subventions

Organisme : The Federal state of Saxony-Anhalt and the European Structural and Investment Fund
ID : ZS/2019/07/99748
Organisme : The federal state Saxony-Anhalt and the European Structural and Investment Fund
ID : ESF, 2014-202, ZS/2016/08/80645
Organisme : The federal state Saxony-Anhalt and the European Structural and Investment Fund
ID : ZS/2016/08/80645
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB854 A29N
Organisme : German ministry of Education and Research
ID : TBENAGER 01KI1728H

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T. Tick-borne encephalitis virus—a review of an emerging zoonosis. J Gen Virol. 2009;90:1781–94.
pubmed: 19420159
Griffin DE. Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol. 2003;3:493–502.
pubmed: 12776209 pmcid: 7097089
Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev. 2009;227:54–65.
pubmed: 19120475
Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5:1061–8.
pubmed: 15361868
Lee PY, Kumagai Y, Li Y, Takeuchi O, Yoshida H, Weinstein J, Kellner ES, Nacionales D, Barker T, Kelly-Scumpia K, et al. TLR7-dependent and FcgammaR-independent production of type I interferon in experimental mouse lupus. J Exp Med. 2008;205:2995–3006.
pubmed: 19047436 pmcid: 2605237
Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev. 2007;220:214–24.
pubmed: 17979849
Takeuchi O, Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol. 2008;20:17–22.
pubmed: 18272355
Marié I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. Embo j. 1998;17:6660–9.
pubmed: 9822609 pmcid: 1171011
Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature. 2005;434:1035–40.
pubmed: 15815647
Barchet W, Cella M, Odermatt B, Asselin-Paturel C, Colonna M, Kalinke U. Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J Exp Med. 2002;195:507–16.
pubmed: 11854363 pmcid: 2193622
Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434:772–7.
pubmed: 15800576
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005;79:13350–61.
pubmed: 16227257 pmcid: 1262587
Erickson AK, Pfeiffer JK. Dynamic viral dissemination in mice infected with yellow fever virus strain 17D. J Virol. 2013;87:12392–7.
pubmed: 24027319 pmcid: 3807901
Weber E, Finsterbusch K, Lindquist R, Nair S, Lienenklaus S, Gekara NO, Janik D, Weiss S, Kalinke U, Överby AK, Kröger A. Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J Virol. 2014;88:12202–12.
pubmed: 25122777 pmcid: 4248936
Aoki K, Shimada S, Simantini DS, Tun MM, Buerano CC, Morita K, Hayasaka D. Type-I interferon response affects an inoculation dose-independent mortality in mice following Japanese encephalitis virus infection. Virol J. 2014;11:105.
pubmed: 24903089 pmcid: 4074870
Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J Immunol. 2009;182:2297–304.
pubmed: 19201884
Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, Conzelmann KK, Michiels T, Staeheli P. Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. J Virol. 2015;90:2031–8.
pubmed: 26656686
Detje CN, Lienenklaus S, Chhatbar C, Spanier J, Prajeeth CK, Soldner C, Tovey MG, Schlüter D, Weiss S, Stangel M, Kalinke U. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon beta producers that protect from lethal encephalitis. J Virol. 2015;89:2731–8.
pubmed: 25540366
Kurhade C, Zegenhagen L, Weber E, Nair S, Michaelsen-Preusse K, Spanier J, Gekara NO, Kröger A, Överby AK. Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J Neuroinflammation. 2016;13:22.
pubmed: 26819220 pmcid: 4730761
Overby AK, Popov VL, Niedrig M, Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J Virol. 2010;84:8470–83.
pubmed: 20554782 pmcid: 2919015
Nair S, Michaelsen-Preusse K, Finsterbusch K, Stegemann-Koniszewski S, Bruder D, Grashoff M, Korte M, Köster M, Kalinke U, Hauser H, Kröger A. Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons. PLoS Pathog. 2014;10: e1003999.
pubmed: 24675692 pmcid: 3968136
Niedrig M, Klockmann U, Lang W, Roeder J, Burk S, Modrow S, Pauli G. Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol. 1994;38:141–9.
pubmed: 7817895
Düsedau HP, Steffen J, Figueiredo CA, Boehme JD, Schultz K, Erck C, Korte M, Faber-Zuschratter H, Smalla KH, Dieterich D, et al. Influenza A virus (H1N1) infection induces microglial activation and temporal dysbalance in glutamatergic synaptic transmission. mBio. 2021;12:177621.
Nandakumar R, Finsterbusch K, Lipps C, Neumann B, Grashoff M, Nair S, Hochnadel I, Lienenklaus S, Wappler I, Steinmann E, et al. Hepatitis C virus replication in mouse cells is restricted by IFN-dependent and -independent mechanisms. Gastroenterology. 2013;145:1414-1423.e1411.
pubmed: 23973921
Lienenklaus S, Cornitescu M, Zietara N, Lyszkiewicz M, Gekara N, Jablonska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M, et al. Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol. 2009;183:3229–36.
pubmed: 19667093
Saito T, Gale M Jr. Principles of intracellular viral recognition. Curr Opin Immunol. 2007;19:17–23.
pubmed: 17118636
tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol. 2002;76:3659–69.
pubmed: 11907205 pmcid: 136070
Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity. 2006;25:349–60.
pubmed: 16979567
Dalskov L, Narita R, Andersen LL, Jensen N, Assil S, Kristensen KH, Mikkelsen JG, Fujita T, Mogensen TH, Paludan SR, Hartmann R. Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Nucleic Acids Res. 2020;48:11421–33.
pubmed: 33205822 pmcid: 7672473
Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity. 2000;13:539–48.
pubmed: 11070172
Levy DE, Marié I, Prakash A. Ringing the interferon alarm: differential regulation of gene expression at the interface between innate and adaptive immunity. Curr Opin Immunol. 2003;15:52–8.
pubmed: 12495733
Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, Day J, Greenbaum J, Glass CK, Diamond MS, Shresta S. An IRF-3-, IRF-5-, and IRF-7-independent pathway of dengue viral resistance utilizes IRF-1 to stimulate type I and II interferon responses. Cell Rep. 2017;21:1600–12.
pubmed: 29117564 pmcid: 5696617
Stirnweiss A, Ksienzyk A, Klages K, Rand U, Grashoff M, Hauser H, Kröger A. IFN regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene induction. J Immunol. 2010;184:5179–85.
pubmed: 20308629
Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M Jr, Diamond MS. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol. 2008;82:8465–75.
pubmed: 18562536 pmcid: 2519659
Proenca-Modena JL, Sesti-Costa R, Pinto AK, Richner JM, Lazear HM, Lucas T, Hyde JL, Diamond MS. Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells. J Virol. 2015;89:4720–37.
pubmed: 25717109 pmcid: 4403474
Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, Vick SC, Clepper L, Thackray L, Brassil MM, Virgin HW, et al. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. 2013;9: e1003118.
pubmed: 23300459 pmcid: 3536698
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M Jr, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017. https://doi.org/10.1172/JCI88720 .
doi: 10.1172/JCI88720 pubmed: 28134626 pmcid: 5330728
Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5:e01476-e11414.
pubmed: 25161189 pmcid: 4173776
Christensen JE, Fenger C, Issazadeh-Navikas S, Krug A, Liljestrom P, Goriely S, Paludan SR, Finsen B, Christensen JP, Thomsen AR. Differential impact of interferon regulatory factor 7 in initiation of the type I interferon response in the lymphocytic choriomeningitis virus-infected central nervous system versus the periphery. J Virol. 2012;86:7384–92.
pubmed: 22514347 pmcid: 3416342
Cohen M, Matcovitch O, David E, Barnett-Itzhaki Z, Keren-Shaul H, Blecher-Gonen R, Jaitin DA, Sica A, Amit I, Schwartz M. Chronic exposure to TGFbeta1 regulates myeloid cell inflammatory response in an IRF7-dependent manner. Embo j. 2014;33:2906–21.
pubmed: 25385836 pmcid: 4282639
Drokhlyansky E, Göz Aytürk D, Soh TK, Chrenek R, O’Loughlin E, Madore C, Butovsky O, Cepko CL. The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci USA. 2017;114:E95-e104.
pubmed: 27980033
Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A, Gingele S, Pott F, Richter J, Beyer C. Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci. 2008;35:235–43.
pubmed: 18373222
Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2:679–89.
pubmed: 17117171
Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, Michiels T. Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci USA. 2006;103:7835–40.
pubmed: 16682623 pmcid: 1458506
Kallfass C, Ackerman A, Lienenklaus S, Weiss S, Heimrich B, Staeheli P. Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice. J Virol. 2012;86:11223–30.
pubmed: 22875966 pmcid: 3457137
Ghita L, Breitkopf V, Mulenge F, Pavlou A, Gern OL, Durán V, Prajeeth CK, Kohls M, Jung K, Stangel M, et al. Sequential MAVS and MyD88/TRIF signaling triggers anti-viral responses of tick-borne encephalitis virus-infected murine astrocytes. J Neurosci Res. 2021;99:2478–92.
pubmed: 34296786
Lindqvist R, Mundt F, Gilthorpe JD, Wölfel S, Gekara NO, Kröger A, Överby AK. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J Neuroinflammation. 2016;13:277.
pubmed: 27776548 pmcid: 5078952
Hwang M, Bergmann CC. Intercellular communication is key for protective IFNα/β signaling during viral central nervous system infection. Viral Immunol. 2019;32:1–6.
pubmed: 30222502 pmcid: 6350053
Kumagai Y, Kumar H, Koyama S, Kawai T, Takeuchi O, Akira S. Cutting Edge: TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-{alpha} production in plasmacytoid dendritic cells. J Immunol. 2009;182:3960–4.
pubmed: 19299691

Auteurs

Loreen Weichert (L)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.

Henning Peter Düsedau (HP)

Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.

David Fritzsch (D)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.

Sarah Schreier (S)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.

Annika Scharf (A)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.

Martina Grashoff (M)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.

Kristin Cebulski (K)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.

Kristin Michaelsen-Preusse (K)

Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany.

Christian Erck (C)

Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.

Stefan Lienenklaus (S)

Institute for Laboratory Animal Science, Hanover Medical School, 30625, Hannover, Germany.

Ildiko Rita Dunay (IR)

Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany.
Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany.

Andrea Kröger (A)

Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany. andrea.kroeger@med.ovgu.de.
Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. andrea.kroeger@med.ovgu.de.
Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany. andrea.kroeger@med.ovgu.de.
Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany. andrea.kroeger@med.ovgu.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH