Post-transcriptional gene silencing in a dynamic RNP world.
RBP
deadenylation
gene silencing
m6A
microRNA
Journal
Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112
Informations de publication
Date de publication:
26 10 2023
26 10 2023
Historique:
received:
05
05
2023
accepted:
04
08
2023
medline:
9
11
2023
pubmed:
23
9
2023
entrez:
22
9
2023
Statut:
epublish
Résumé
MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.
Identifiants
pubmed: 37739934
pii: hsz-2023-0203
doi: 10.1515/hsz-2023-0203
doi:
Substances chimiques
MicroRNAs
0
RNA-Binding Proteins
0
Argonaute Proteins
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1051-1067Informations de copyright
© 2023 the author(s), published by De Gruyter, Berlin/Boston.
Références
Allo, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Plass, M., Eyras, E., Elela, S.A., et al.. (2009). Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16: 717–724, https://doi.org/10.1038/nsmb.1620 .
doi: 10.1038/nsmb.1620
Ameres, S.L., Horwich, M.D., Hung, J.H., Xu, J., Ghildiyal, M., Weng, Z., and Zamore, P.D. (2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science 328: 1534–1539, https://doi.org/10.1126/science.1187058 .
doi: 10.1126/science.1187058
Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Young, R., Morozova, N., Fenouil, R., Descostes, N., Andrau, J.C., et al.. (2012). Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 19: 998–1004, https://doi.org/10.1038/nsmb.2373 .
doi: 10.1038/nsmb.2373
Arvola, R.M., Chang, C.T., Buytendorp, J.P., Levdansky, Y., Valkov, E., Freddolino, P.L., and Goldstrohm, A.C. (2020). Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res. 48: 1843–1871, https://doi.org/10.1093/nar/gkz1187 .
doi: 10.1093/nar/gkz1187
Ascano, M.Jr., Mukherjee, N., Bandaru, P., Miller, J.B., Nusbaum, J.D., Corcoran, D.L., Langlois, C., Munschauer, M., Dewell, S., Hafner, M., et al.. (2012). FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492: 382–386, https://doi.org/10.1038/nature11737 .
doi: 10.1038/nature11737
Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173: 20–51, https://doi.org/10.1016/j.cell.2018.03.006 .
doi: 10.1016/j.cell.2018.03.006
Bayfield, M.A. and Maraia, R.J. (2009). Precursor-product discrimination by La protein during tRNA metabolism. Nat. Struct. Mol. Biol. 16: 430–437, https://doi.org/10.1038/nsmb.1573 .
doi: 10.1038/nsmb.1573
Bhandari, D., Raisch, T., Weichenrieder, O., Jonas, S., and Izaurralde, E. (2014). Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev. 28: 888–901, https://doi.org/10.1101/gad.237289.113 .
doi: 10.1101/gad.237289.113
Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125: 1111–1124, https://doi.org/10.1016/j.cell.2006.04.031 .
doi: 10.1016/j.cell.2006.04.031
Bibel, B., Elkayam, E., Silletti, S., Komives, E.A., and Joshua-Tor, L. (2022). Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. eLife 11:e76908.
Bitetti, A., Mallory, A.C., Golini, E., Carrieri, C., Carreno Gutierrez, H., Perlas, E., Perez-Rico, Y.A., Tocchini-Valentini, G.P., Enright, A.J., Norton, W.H.J., et al.. (2018). MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25: 244–251, https://doi.org/10.1038/s41594-018-0032-x .
doi: 10.1038/s41594-018-0032-x
Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185–191, https://doi.org/10.1261/rna.5167604 .
doi: 10.1261/rna.5167604
Boo, S.H., Ha, H., Lee, Y., Shin, M.K., Lee, S., and Kim, Y.K. (2022). UPF1 promotes rapid degradation of m(6)A-containing RNAs. Cell Rep 39: 110861, https://doi.org/10.1016/j.celrep.2022.110861 .
doi: 10.1016/j.celrep.2022.110861
Bottini, S., Hamouda-Tekaya, N., Mategot, R., Zaragosi, L.E., Audebert, S., Pisano, S., Grandjean, V., Mauduit, C., Benahmed, M., Barbry, P., et al.. (2017). Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat. Commun. 8: 1189, https://doi.org/10.1038/s41467-017-01126-x .
doi: 10.1038/s41467-017-01126-x
Braun, J.E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011). GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44: 120–133, https://doi.org/10.1016/j.molcel.2011.09.007 .
doi: 10.1016/j.molcel.2011.09.007
Braun, J.E., Truffault, V., Boland, A., Huntzinger, E., Chang, C.T., Haas, G., Weichenrieder, O., Coles, M., and Izaurralde, E. (2012). A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 19: 1324–1331, https://doi.org/10.1038/nsmb.2413 .
doi: 10.1038/nsmb.2413
Briskin, D., Wang, P.Y., and Bartel, D.P. (2020). The biochemical basis for the cooperative action of microRNAs. Proc. Natl. Acad. Sci. U. S. A. 117: 17764–17774, https://doi.org/10.1073/pnas.1920404117 .
doi: 10.1073/pnas.1920404117
Buck, A.H., Perot, J., Chisholm, M.A., Kumar, D.S., Tuddenham, L., Cognat, V., Marcinowski, L., Dolken, L., and Pfeffer, S. (2010). Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16: 307–315, https://doi.org/10.1261/rna.1819210 .
doi: 10.1261/rna.1819210
Bulbrook, D., Brazier, H., Mahajan, P., Kliszczak, M., Fedorov, O., Marchese, F.P., Aubareda, A., Chalk, R., Picaud, S., Strain-Damerell, C., et al.. (2018). Tryptophan-mediated interactions between tristetraprolin and the CNOT9 subunit are required for CCR4-NOT deadenylase complex recruitment. J. Mol. Biol. 430: 722–736, https://doi.org/10.1016/j.jmb.2017.12.018 .
doi: 10.1016/j.jmb.2017.12.018
Burroughs, A.M., Ando, Y., de Hoon, M.J., Tomaru, Y., Suzuki, H., Hayashizaki, Y., and Daub, C.O. (2011). Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 8: 158–177, https://doi.org/10.4161/rna.8.1.14300 .
doi: 10.4161/rna.8.1.14300
Busch, B., Bley, N., Muller, S., Glass, M., Misiak, D., Lederer, M., Vetter, M., Strauss, H.G., Thomssen, C., and Huttelmaier, S. (2016). The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family. Nucleic Acids Res. 44: 3845–3864, https://doi.org/10.1093/nar/gkw099 .
doi: 10.1093/nar/gkw099
Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966, https://doi.org/10.1261/rna.7135204 .
doi: 10.1261/rna.7135204
Cazalla, D., Yario, T., and Steitz, J.A. (2010). Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328: 1563–1566, https://doi.org/10.1126/science.1187197 .
doi: 10.1126/science.1187197
Chang, H.M., Triboulet, R., Thornton, J.E., and Gregory, R.I. (2013). A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497: 244–248, https://doi.org/10.1038/nature12119 .
doi: 10.1038/nature12119
Chekulaeva, M., Mathys, H., Zipprich, J.T., Attig, J., Colic, M., Parker, R., and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18: 1218–1226, https://doi.org/10.1038/nsmb.2166 .
doi: 10.1038/nsmb.2166
Chicoine, J., Benoit, P., Gamberi, C., Paliouras, M., Simonelig, M., and Lasko, P. (2007). Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Dev. Cell 13: 691–704, https://doi.org/10.1016/j.devcel.2007.10.002 .
doi: 10.1016/j.devcel.2007.10.002
Chu, Y., Kilikevicius, A., Liu, J., Johnson, K.C., Yokota, S., and Corey, D.R. (2020). Argonaute binding within 32032-untranslated regions poorly predicts gene repression. Nucleic Acids Res. 48: 7439–7453, https://doi.org/10.1093/nar/gkaa478 .
doi: 10.1093/nar/gkaa478
Chu, Y., Yokota, S., Liu, J., Kilikevicius, A., Johnson, K.C., and Corey, D.R. (2021). Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA 27: 991–1003, https://doi.org/10.1261/rna.078707.121 .
doi: 10.1261/rna.078707.121
Chu, Y., Yue, X., Younger, S.T., Janowski, B.A., and Corey, D.R. (2010). Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 38: 7736–7748, https://doi.org/10.1093/nar/gkq648 .
doi: 10.1093/nar/gkq648
Corley, M., Burns, M.C., and Yeo, G.W. (2020). How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78: 9–29, https://doi.org/10.1016/j.molcel.2020.03.011 .
doi: 10.1016/j.molcel.2020.03.011
Cui, J. and Placzek, W.J. (2018). PTBP1 enhances miR-101-guided AGO2 targeting to MCL1 and promotes miR-101-induced apoptosis. Cell Death Dis. 9: 552, https://doi.org/10.1038/s41419-018-0551-8 .
doi: 10.1038/s41419-018-0551-8
Curtis, D., Treiber, D.K., Tao, F., Zamore, P.D., Williamson, J.R., and Lehmann, R. (1997). A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J. 16: 834–843, https://doi.org/10.1093/emboj/16.4.834 .
doi: 10.1093/emboj/16.4.834
de la Mata, M., Gaidatzis, D., Vitanescu, M., Stadler, M.B., Wentzel, C., Scheiffele, P., Filipowicz, W., and Grosshans, H. (2015). Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 16: 500–511, https://doi.org/10.15252/embr.201540078 .
doi: 10.15252/embr.201540078
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235, https://doi.org/10.1038/nature03049 .
doi: 10.1038/nature03049
Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., Liu, M., Ma, J., and Wu, L. (2016). YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7: 12626, https://doi.org/10.1038/ncomms12626 .
doi: 10.1038/ncomms12626
Dueck, A., Ziegler, C., Eichner, A., Berezikov, E., and Meister, G. (2012). microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res. 40: 9850–9862, https://doi.org/10.1093/nar/gks705 .
doi: 10.1093/nar/gks705
Elcheva, I., Goswami, S., Noubissi, F.K., and Spiegelman, V.S. (2009). CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell 35: 240–246, https://doi.org/10.1016/j.molcel.2009.06.007 .
doi: 10.1016/j.molcel.2009.06.007
Elkayam, E., Faehnle, C.R., Morales, M., Sun, J., Li, H., and Joshua-Tor, L. (2017). Multivalent recruitment of human argonaute by GW182. Mol. Cell 67: 646–658 e643, https://doi.org/10.1016/j.molcel.2017.07.007 .
doi: 10.1016/j.molcel.2017.07.007
Enwerem, III, Elrod, N.D., Chang, C.T., Lin, A., Ji, P., Bohn, J.A., Levdansky, Y., Wagner, E.J., Valkov, E., and Goldstrohm, A.C. (2021). Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. RNA 27: 445–464, https://doi.org/10.1261/rna.078436.120 .
doi: 10.1261/rna.078436.120
Eulalio, A., Behm-Ansmant, I., Schweizer, D., and Izaurralde, E. (2007). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27: 3970–3981, https://doi.org/10.1128/mcb.00128-07 .
doi: 10.1128/mcb.00128-07
Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K., and Fritzler, M.J. (2002). A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13: 1338–1351, https://doi.org/10.1091/mbc.01-11-0544 .
doi: 10.1091/mbc.01-11-0544
Fabian, M.R., Frank, F., Rouya, C., Siddiqui, N., Lai, W.S., Karetnikov, A., Blackshear, P.J., Nagar, B., and Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20: 735–739, https://doi.org/10.1038/nsmb.2572 .
doi: 10.1038/nsmb.2572
Fabian, M.R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J.T., Svitkin, Y.V., Rivas, F., Jinek, M., Wohlschlegel, J., Doudna, J.A., et al.. (2009). Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35: 868–880, https://doi.org/10.1016/j.molcel.2009.08.004 .
doi: 10.1016/j.molcel.2009.08.004
Faehnle, C.R., Walleshauser, J., and Joshua-Tor, L. (2014). Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514: 252–256, https://doi.org/10.1038/nature13553 .
doi: 10.1038/nature13553
Faller, M., Matsunaga, M., Yin, S., Loo, J.A., and Guo, F. (2007). Heme is involved in microRNA processing. Nat. Struct. Mol. Biol. 14: 23–29, https://doi.org/10.1038/nsmb1182 .
doi: 10.1038/nsmb1182
Fang, W. and Bartel, D.P. (2015). The menu of features that define primary MicroRNAs and Enable De Novo design of MicroRNA genes. Mol. Cell 60: 131–145, https://doi.org/10.1016/j.molcel.2015.08.015 .
doi: 10.1016/j.molcel.2015.08.015
Francia, S., Michelini, F., Saxena, A., Tang, D., de Hoon, M., Anelli, V., Mione, M., Carninci, P., and d’Adda di Fagagna, F. (2012). Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488: 231–35.
Frohn, A., Eberl, H.C., Stohr, J., Glasmacher, E., Rudel, S., Heissmeyer, V., Mann, M., and Meister, G. (2012). Dicer-dependent and -independent Argonaute2 protein interaction networks in mammalian cells. Mol. Cell. Proteomics 11: 1442–1456, https://doi.org/10.1074/mcp.m112.017756 .
doi: 10.1074/mcp.m112.017756
Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet. 15: 293–306, https://doi.org/10.1038/nrg3724 .
doi: 10.1038/nrg3724
Gagnon, K.T. and Corey, D.R. (2012). Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Nucleic Acid Ther. 22: 3–16, https://doi.org/10.1089/nat.2011.0330 .
doi: 10.1089/nat.2011.0330
Gagnon, K.T., Li, L., Chu, Y., Janowski, B.A., and Corey, D.R. (2014). RNAi factors are present and active in human cell nuclei. Cell Rep. 6: 211–221, https://doi.org/10.1016/j.celrep.2013.12.013 .
doi: 10.1016/j.celrep.2013.12.013
Gehring, N.H., Wahle, E., and Fischer, U. (2017). Deciphering the mRNP code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem. Sci. 42: 369–382, https://doi.org/10.1016/j.tibs.2017.02.004 .
doi: 10.1016/j.tibs.2017.02.004
Glasmacher, E., Hoefig, K.P., Vogel, K.U., Rath, N., Du, L., Wolf, C., Kremmer, E., Wang, X., and Heissmeyer, V. (2010). Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11: 725–733, https://doi.org/10.1038/ni.1902 .
doi: 10.1038/ni.1902
Golden, R.J., Chen, B., Li, T., Braun, J., Manjunath, H., Chen, X., Wu, J., Schmid, V., Chang, T.C., Kopp, F., et al.. (2017). An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542: 197–202, https://doi.org/10.1038/nature21025 .
doi: 10.1038/nature21025
Gregersen, L.H., Schueler, M., Munschauer, M., Mastrobuoni, G., Chen, W., Kempa, S., Dieterich, C., and Landthaler, M. (2014). MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 54: 573–585, https://doi.org/10.1016/j.molcel.2014.03.017 .
doi: 10.1016/j.molcel.2014.03.017
Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34, https://doi.org/10.1016/s0092-8674(01)00431-7 .
doi: 10.1016/s0092-8674(01)00431-7
Guo, L., Kim, H.J., Wang, H., Monaghan, J., Freyermuth, F., Sung, J.C., O’Donovan, K., Fare, C.M., Diaz, Z., Singh, N., et al.. (2018). Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173: 677–692 e620, https://doi.org/10.1016/j.cell.2018.03.002 .
doi: 10.1016/j.cell.2018.03.002
Gutbrod, M.J. and Martienssen, R.A. (2020). Conserved chromosomal functions of RNA interference. Nat. Rev. Genet. 21: 311–331, https://doi.org/10.1038/s41576-019-0203-6 .
doi: 10.1038/s41576-019-0203-6
Han, J., LaVigne, C.A., Jones, B.T., Zhang, H., Gillett, F., and Mendell, J.T. (2020). A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370: eabc9546.
Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18: 3016–3027, https://doi.org/10.1101/gad.1262504 .
doi: 10.1101/gad.1262504
Hanet, A., Rasch, F., Weber, R., Ruscica, V., Fauser, M., Raisch, T., Kuzuoglu-Ozturk, D., Chang, C.T., Bhandari, D., Igreja, C., et al. (2019). HELZ directly interacts with CCR4-NOT and causes decay of bound mRNAs. Life Sci. Alliance 2: e201900405.
Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J., and Kjems, J. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30: 4414–4422, https://doi.org/10.1038/emboj.2011.359 .
doi: 10.1038/emboj.2011.359
Hasler, D., Lehmann, G., Murakawa, Y., Klironomos, F., Jakob, L., Grasser, F.A., Rajewsky, N., Landthaler, M., and Meister, G. (2016). The Lupus Autoantigen La prevents mis-channeling of tRNA fragments into the human MicroRNA pathway. Mol. Cell 63: 110–124, https://doi.org/10.1016/j.molcel.2016.05.026 .
doi: 10.1016/j.molcel.2016.05.026
Hauptmann, J., Dueck, A., Harlander, S., Pfaff, J., Merkl, R., and Meister, G. (2013). Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20: 814–817, https://doi.org/10.1038/nsmb.2577 .
doi: 10.1038/nsmb.2577
Hauptmann, J., Schraivogel, D., Bruckmann, A., Manickavel, S., Jakob, L., Eichner, N., Pfaff, J., Urban, M., Sprunck, S., Hafner, M., et al.. (2015). Biochemical isolation of Argonaute protein complexes by Ago-APP. Proc. Natl. Acad. Sci. U. S. A. 112: 11841–11845, https://doi.org/10.1073/pnas.1506116112 .
doi: 10.1073/pnas.1506116112
He, P.C., Wei, J., Dou, X., Harada, B.T., Zhang, Z., Ge, R., Liu, C., Zhang, L.S., Yu, X., Wang, S., et al.. (2023). Exon architecture controls mRNA m(6)A suppression and gene expression. Science 379: 677–682, https://doi.org/10.1126/science.abj9090 .
doi: 10.1126/science.abj9090
Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38: 721–725, https://doi.org/10.1038/ng1804 .
doi: 10.1038/ng1804
Hennig, J. and Sattler, M. (2015). Deciphering the protein-RNA recognition code: combining large-scale quantitative methods with structural biology. Bioessays 37: 899–908, https://doi.org/10.1002/bies.201500033 .
doi: 10.1002/bies.201500033
Heo, I., Joo, C., Cho, J., Ha, M., Han, J., and Kim, V.N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32: 276–284, https://doi.org/10.1016/j.molcel.2008.09.014 .
doi: 10.1016/j.molcel.2008.09.014
Heo, I., Joo, C., Kim, Y.K., Ha, M., Yoon, M.J., Cho, J., Yeom, K.H., Han, J., and Kim, V.N. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138: 696–708, https://doi.org/10.1016/j.cell.2009.08.002 .
doi: 10.1016/j.cell.2009.08.002
Hicks, J.A., Li, L., Matsui, M., Chu, Y., Volkov, O., Johnson, K.C., and Corey, D.R. (2017). Human GW182 paralogs are the central organizers for RNA-mediated control of transcription. Cell Rep. 20: 1543–1552, https://doi.org/10.1016/j.celrep.2017.07.058 .
doi: 10.1016/j.celrep.2017.07.058
Hock, J., Weinmann, L., Ender, C., Rudel, S., Kremmer, E., Raabe, M., Urlaub, H., and Meister, G. (2007). Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8: 1052–1060, https://doi.org/10.1038/sj.embor.7401088 .
doi: 10.1038/sj.embor.7401088
Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.D., Simons, M., Niessing, D., Madl, T., et al.. (2018). Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173: 706–719 e713, https://doi.org/10.1016/j.cell.2018.03.004 .
doi: 10.1016/j.cell.2018.03.004
Holoch, D. and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16: 71–84, https://doi.org/10.1038/nrg3863 .
doi: 10.1038/nrg3863
Horman, S.R., Janas, M.M., Litterst, C., Wang, B., MacRae, I.J., Sever, M.J., Morrissey, D.V., Graves, P., Luo, B., Umesalma, S., et al.. (2013). Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol. Cell 50: 356–367, https://doi.org/10.1016/j.molcel.2013.03.015 .
doi: 10.1016/j.molcel.2013.03.015
Huntzinger, E., Braun, J.E., Heimstadt, S., Zekri, L., and Izaurralde, E. (2010). Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 29: 4146–4160, https://doi.org/10.1038/emboj.2010.274 .
doi: 10.1038/emboj.2010.274
Huntzinger, E., Kuzuoglu-Ozturk, D., Braun, J.E., Eulalio, A., Wohlbold, L., and Izaurralde, E. (2012). The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 41: 978–994, https://doi.org/10.1093/nar/gks1078 .
doi: 10.1093/nar/gks1078
Igreja, C. and Izaurralde, E. (2011). CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev. 25: 1955–1967, https://doi.org/10.1101/gad.17136311 .
doi: 10.1101/gad.17136311
Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., and Tomari, Y. (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39: 292–299, https://doi.org/10.1016/j.molcel.2010.05.015 .
doi: 10.1016/j.molcel.2010.05.015
Jafarifar, F., Yao, P., Eswarappa, S.M., and Fox, P.L. (2011). Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. EMBO J. 30: 1324–1334, https://doi.org/10.1038/emboj.2011.38 .
doi: 10.1038/emboj.2011.38
Janas, M.M., Wang, B., Harris, A.S., Aguiar, M., Shaffer, J.M., Subrahmanyam, Y.V., Behlke, M.A., Wucherpfennig, K.W., Gygi, S.P., Gagnon, E., et al.. (2012). Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA 18: 2041–2055, https://doi.org/10.1261/rna.035675.112 .
doi: 10.1261/rna.035675.112
Janowski, B.A., Huffman, K.E., Schwartz, J.C., Ram, R., Nordsell, R., Shames, D.S., Minna, J.D., and Corey, D.R. (2006). Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13: 787–792, https://doi.org/10.1038/nsmb1140 .
doi: 10.1038/nsmb1140
Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623–634, https://doi.org/10.1016/j.cell.2004.12.038 .
doi: 10.1016/j.cell.2004.12.038
Johnson, S.T., Chu, Y., Liu, J., and Corey, D.R. (2021). Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. RNA 27: 1004–1016, https://doi.org/10.1261/rna.078709.121 .
doi: 10.1261/rna.078709.121
Jouravleva, K., Golovenko, D., Demo, G., Dutcher, R.C., Hall, T.M.T., Zamore, P.D., and Korostelev, A.A. (2022). Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol. Cell 82: 4049–4063 e4046, https://doi.org/10.1016/j.molcel.2022.09.002 .
doi: 10.1016/j.molcel.2022.09.002
Kakumani, P.K., Guitart, T., Houle, F., Harvey, L.M., Goyer, B., Germain, L., Gebauer, F., and Simard, M.J. (2021). CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma. Oncogene 40: 3231–3244, https://doi.org/10.1038/s41388-021-01767-9 .
doi: 10.1038/s41388-021-01767-9
Kalantari, R., Hicks, J.A., Li, L., Gagnon, K.T., Sridhara, V., Lemoff, A., Mirzaei, H., and Corey, D.R. (2016). Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA 22: 1085–1098, https://doi.org/10.1261/rna.056499.116 .
doi: 10.1261/rna.056499.116
Kang, W., Fromm, B., Houben, A.J., Hoye, E., Bezdan, D., Arnan, C., Thrane, K., Asp, M., Johnson, R., Biryukova, I., et al.. (2021). MapToCleave: high-throughput profiling of microRNA biogenesis in living cells. Cell Rep 37: 110015, https://doi.org/10.1016/j.celrep.2021.110015 .
doi: 10.1016/j.celrep.2021.110015
Katsantoni, M., van Nimwegen, E., and Zavolan, M. (2023). Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs. Genome Biol. 24: 77, https://doi.org/10.1186/s13059-023-02913-0 .
doi: 10.1186/s13059-023-02913-0
Kedde, M., Strasser, M.J., Boldajipour, B., Vrielink, J.A., Slanchev, K., le Sage, C., Nagel, R., Voorhoeve, P.M., van Duijse, J., Orom, U.A., et al.. (2007). RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131: 1273–1286, https://doi.org/10.1016/j.cell.2007.11.034 .
doi: 10.1016/j.cell.2007.11.034
Kedde, M., van Kouwenhove, M., Zwart, W., Oude Vrielink, J.A., Elkon, R., and Agami, R. (2010). A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12: 1014–1020, https://doi.org/10.1038/ncb2105 .
doi: 10.1038/ncb2105
Kelly, T.J., Suzuki, H.I., Zamudio, J.R., Suzuki, M., and Sharp, P.A. (2019). Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A. RNA 25: 1291–1297, https://doi.org/10.1261/rna.071621.119 .
doi: 10.1261/rna.071621.119
Kenny, P.J., Zhou, H., Kim, M., Skariah, G., Khetani, R.S., Drnevich, J., Arcila, M.L., Kosik, K.S., and Ceman, S. (2014). MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. Cell Rep. 9: 1729–1741, https://doi.org/10.1016/j.celrep.2014.10.054 .
doi: 10.1016/j.celrep.2014.10.054
Keskeny, C., Raisch, T., Sgromo, A., Igreja, C., Bhandari, D., Weichenrieder, O., and Izaurralde, E. (2019). A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes Dev. 33: 236–252, https://doi.org/10.1101/gad.320952.118 .
doi: 10.1101/gad.320952.118
Ketting, R.F. and Cochella, L. (2021). Concepts and functions of small RNA pathways in C. elegans. Curr Top Dev Biol. 144: 45–89, https://doi.org/10.1016/bs.ctdb.2020.08.002 .
doi: 10.1016/bs.ctdb.2020.08.002
Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and Plasterk, R.H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15: 2654–2659, https://doi.org/10.1101/gad.927801 .
doi: 10.1101/gad.927801
Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209–216, https://doi.org/10.1016/s0092-8674(03)00801-8 .
doi: 10.1016/s0092-8674(03)00801-8
Kilikevicius, A., Meister, G., and Corey, D.R. (2022). Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 50: 617–634, https://doi.org/10.1093/nar/gkab1256 .
doi: 10.1093/nar/gkab1256
Kim, H., Kim, J., Yu, S., Lee, Y.Y., Park, J., Choi, R.J., Yoon, S.J., Kang, S.G., and Kim, V.N. (2020). A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell 78: 1224–1236 e1225, https://doi.org/10.1016/j.molcel.2020.04.030 .
doi: 10.1016/j.molcel.2020.04.030
Kim, H.H., Kuwano, Y., Srikantan, S., Lee, E.K., Martindale, J.L., and Gorospe, M. (2009). HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23: 1743–1748, https://doi.org/10.1101/gad.1812509 .
doi: 10.1101/gad.1812509
Kim, K., Baek, S.C., Lee, Y.Y., Bastiaanssen, C., Kim, J., Kim, H., and Kim, V.N. (2021). A quantitative map of human primary microRNA processing sites. Mol. Cell 81: 3422–3439 e3411, https://doi.org/10.1016/j.molcel.2021.07.002 .
doi: 10.1016/j.molcel.2021.07.002
Kingston, E.R., Blodgett, L.W., and Bartel, D.P. (2022). Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Mol. Cell 82: 3872–3884 e3879, https://doi.org/10.1016/j.molcel.2022.08.029 .
doi: 10.1016/j.molcel.2022.08.029
Kleaveland, B., Shi, C.Y., Stefano, J., and Bartel, D.P. (2018). A network of noncoding regulatory RNAs acts in the mammalian brain. Cell . 174: 350–362 e317, https://doi.org/10.1016/j.cell.2018.05.022 .
doi: 10.1016/j.cell.2018.05.022
Klum, S.M., Chandradoss, S.D., Schirle, N.T., Joo, C., and MacRae, I.J. (2017). Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J 37: 75–88, https://doi.org/10.15252/embj.201796474 .
doi: 10.15252/embj.201796474
Kundu, P., Fabian, M.R., Sonenberg, N., Bhattacharyya, S.N., and Filipowicz, W. (2012). HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res. 40: 5088–5100, https://doi.org/10.1093/nar/gks148 .
doi: 10.1093/nar/gks148
Kwak, P.B. and Tomari, Y. (2012). The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19: 145–151, https://doi.org/10.1038/nsmb.2232 .
doi: 10.1038/nsmb.2232
Kwon, S.C., Nguyen, T.A., Choi, Y.G., Jo, M.H., Hohng, S., Kim, V.N., and Woo, J.S. (2016). Structure of human DROSHA. Cell 164: 81–90, https://doi.org/10.1016/j.cell.2015.12.019 .
doi: 10.1016/j.cell.2015.12.019
Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P.Y., Soll, S.J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M., and Tuschl, T. (2008). Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14: 2580–2596, https://doi.org/10.1261/rna.1351608 .
doi: 10.1261/rna.1351608
Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14: 2162–2167, https://doi.org/10.1016/j.cub.2004.11.001 .
doi: 10.1016/j.cub.2004.11.001
Lasman, L., Krupalnik, V., Viukov, S., Mor, N., Aguilera-Castrejon, A., Schneir, D., Bayerl, J., Mizrahi, O., Peles, S., Tawil, S., et al.. (2020). Context-dependent functional compensation between Ythdf m(6)A reader proteins. Genes Dev. 34: 1373–1391, https://doi.org/10.1101/gad.340695.120 .
doi: 10.1101/gad.340695.120
Lee, S., Song, J., Kim, S., Kim, J., Hong, Y., Kim, Y., Kim, D., Baek, D., and Ahn, K. (2013). Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13: 678–690, https://doi.org/10.1016/j.chom.2013.05.007 .
doi: 10.1016/j.chom.2013.05.007
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al.. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419, https://doi.org/10.1038/nature01957 .
doi: 10.1038/nature01957
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004a). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23: 4051–4060, https://doi.org/10.1038/sj.emboj.7600385 .
doi: 10.1038/sj.emboj.7600385
Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004b). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69–81, https://doi.org/10.1016/s0092-8674(04)00261-2 .
doi: 10.1016/s0092-8674(04)00261-2
Lee, Y.Y., Kim, H., and Kim, V.N. (2023a). Sequence determinant of small RNA production by DICER. Nature 615: 323–330, https://doi.org/10.1038/s41586-023-05722-4 .
doi: 10.1038/s41586-023-05722-4
Lee, Y.Y., Lee, H., Kim, H., Kim, V.N., and Roh, S.H. (2023b). Structure of the human DICER-pre-miRNA complex in a dicing state. Nature 615: 331–338, https://doi.org/10.1038/s41586-023-05723-3 .
doi: 10.1038/s41586-023-05723-3
Leveille, N., Elkon, R., Davalos, V., Manoharan, V., Hollingworth, D., Oude Vrielink, J., le Sage, C., Melo, C.A., Horlings, H.M., Wesseling, J., et al.. (2011). Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat. Commun. 2: 513, https://doi.org/10.1038/ncomms1519 .
doi: 10.1038/ncomms1519
Libri, V., Helwak, A., Miesen, P., Santhakumar, D., Borger, J.G., Kudla, G., Grey, F., Tollervey, D., and Buck, A.H. (2012). Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl. Acad. Sci. U. S. A. 109: 279–284, https://doi.org/10.1073/pnas.1114204109 .
doi: 10.1073/pnas.1114204109
Lin, K., Zhang, S., Shi, Q., Zhu, M., Gao, L., Xia, W., Geng, B., Zheng, Z., and Xu, E.Y. (2018). Essential requirement of mammalian Pumilio family in embryonic development. Mol. Biol. Cell 29: 2922–2932, https://doi.org/10.1091/mbc.e18-06-0369 .
doi: 10.1091/mbc.e18-06-0369
Lin, S., Choe, J., Du, P., Triboulet, R., and Gregory, R.I. (2016). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62: 335–345, https://doi.org/10.1016/j.molcel.2016.03.021 .
doi: 10.1016/j.molcel.2016.03.021
Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426: 465–469, https://doi.org/10.1038/nature02123 .
doi: 10.1038/nature02123
Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441, https://doi.org/10.1126/science.1102513 .
doi: 10.1126/science.1102513
Liu, J., Gao, M., Xu, S., Chen, Y., Wu, K., Liu, H., Wang, J., Yang, X., Wang, J., Liu, W., et al.. (2020). YTHDF2/3 are required for Somatic reprogramming through different RNA deadenylation pathways. Cell Rep 32: 108120, https://doi.org/10.1016/j.celrep.2020.108120 .
doi: 10.1016/j.celrep.2020.108120
Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R.3rd, Parker, R., and Hannon, G.J. (2005). A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7: 1161–1166, https://doi.org/10.1038/ncb1333 .
doi: 10.1038/ncb1333
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al.. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10: 93–95, https://doi.org/10.1038/nchembio.1432 .
doi: 10.1038/nchembio.1432
Liu, Y., Qu, L., Liu, Y., Roizman, B., and Zhou, G.G. (2017). PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2. Proc. Natl. Acad. Sci. U. S. A. 114: E6902–E6911, https://doi.org/10.1073/pnas.1708713114 .
doi: 10.1073/pnas.1708713114
Loh, B., Jonas, S., and Izaurralde, E. (2013). The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 27: 2125–2138, https://doi.org/10.1101/gad.226951.113 .
doi: 10.1101/gad.226951.113
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303: 95–98, https://doi.org/10.1126/science.1090599 .
doi: 10.1126/science.1090599
Ma, J.B., Yuan, Y.R., Meister, G., Pei, Y., Tuschl, T., and Patel, D.J. (2005). Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434: 666–670, https://doi.org/10.1038/nature03514 .
doi: 10.1038/nature03514
Marcinowski, L., Tanguy, M., Krmpotic, A., Radle, B., Lisnic, V.J., Tuddenham, L., Chane-Woon-Ming, B., Ruzsics, Z., Erhard, F., Benkartek, C., et al.. (2012). Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8: e1002510, https://doi.org/10.1371/journal.ppat.1002510 .
doi: 10.1371/journal.ppat.1002510
Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., and Filipowicz, W. (2014). Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in MicroRNA repression. Mol. Cell 54: 751–765, https://doi.org/10.1016/j.molcel.2014.03.036 .
doi: 10.1016/j.molcel.2014.03.036
Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15: 185–197, https://doi.org/10.1016/j.molcel.2004.07.007 .
doi: 10.1016/j.molcel.2004.07.007
Meister, G., Landthaler, M., Peters, L., Chen, P.Y., Urlaub, H., Luhrmann, R., and Tuschl, T. (2005). Identification of novel argonaute-associated proteins. Curr. Biol. 15: 2149–2155, https://doi.org/10.1016/j.cub.2005.10.048 .
doi: 10.1016/j.cub.2005.10.048
Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.B., and Jaffrey, S.R. (2015). 5′ UTR m(6)A promotes cap-independent translation. Cell 163: 999–1010, https://doi.org/10.1016/j.cell.2015.10.012 .
doi: 10.1016/j.cell.2015.10.012
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149: 1635–1646, https://doi.org/10.1016/j.cell.2012.05.003 .
doi: 10.1016/j.cell.2012.05.003
Michalik, K.M., Bottcher, R., and Forstemann, K. (2012). A small RNA response at DNA ends in Drosophila. Nucleic Acids Res. 40: 9596–9603, https://doi.org/10.1093/nar/gks711 .
doi: 10.1093/nar/gks711
Min, K.W., Jo, M.H., Shin, S., Davila, S., Zealy, R.W., Kang, S.I., Lloyd, L.T., Hohng, S., and Yoon, J.H. (2017). AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 45: 6064–6073, https://doi.org/10.1093/nar/gkx149 .
doi: 10.1093/nar/gkx149
Miyoshi, T., Takeuchi, A., Siomi, H., and Siomi, M.C. (2010). A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol. 17: 1024–1026, https://doi.org/10.1038/nsmb.1875 .
doi: 10.1038/nsmb.1875
Morlando, M., Ballarino, M., Gromak, N., Pagano, F., Bozzoni, I., and Proudfoot, N.J. (2008). Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15: 902–909, https://doi.org/10.1038/nsmb.1475 .
doi: 10.1038/nsmb.1475
Mukherjee, K., Ghoshal, B., Ghosh, S., Chakrabarty, Y., Shwetha, S., Das, S., and Bhattacharyya, S.N. (2016). Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep. 17: 1184–1203, https://doi.org/10.15252/embr.201541930 .
doi: 10.15252/embr.201541930
Muller, S., Bley, N., Glass, M., Busch, B., Rousseau, V., Misiak, D., Fuchs, T., Lederer, M., and Huttelmaier, S. (2018). IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Res. 46: 6285–6303, https://doi.org/10.1093/nar/gky229 .
doi: 10.1093/nar/gky229
Naeeni, A.R., Conte, M.R., and Bayfield, M.A. (2012). RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J. Biol. Chem. 287: 5472–5482, https://doi.org/10.1074/jbc.m111.276071 .
doi: 10.1074/jbc.m111.276071
Nakanishi, K. (2022). Anatomy of four human Argonaute proteins. Nucleic Acids Res. 50: 6618–6638, https://doi.org/10.1093/nar/gkac519 .
doi: 10.1093/nar/gkac519
Nakanishi, K., Ascano, M., Gogakos, T., Ishibe-Murakami, S., Serganov, A.A., Briskin, D., Morozov, P., Tuschl, T., and Patel, D.J. (2013). Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3: 1893–1900, https://doi.org/10.1016/j.celrep.2013.06.010 .
doi: 10.1016/j.celrep.2013.06.010
Nakanishi, K., Weinberg, D.E., Bartel, D.P., and Patel, D.J. (2012). Structure of yeast Argonaute with guide RNA. Nature 486: 368–374, https://doi.org/10.1038/nature11211 .
doi: 10.1038/nature11211
Nguyen, T.A., Jo, M.H., Choi, Y.G., Park, J., Kwon, S.C., Hohng, S., Kim, V.N., and Woo, J.S. (2015). Functional anatomy of the human microprocessor. Cell 161: 1374–1387, https://doi.org/10.1016/j.cell.2015.05.010 .
doi: 10.1016/j.cell.2015.05.010
Nguyen, T.A., Park, J., Dang, T.L., Choi, Y.G., and Kim, V.N. (2018). Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res. 46: 5726–5736, https://doi.org/10.1093/nar/gky248 .
doi: 10.1093/nar/gky248
Nishanth, M.J. and Simon, B. (2020). Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol. Biol. Rep. 47: 785–807, https://doi.org/10.1007/s11033-019-05142-6 .
doi: 10.1007/s11033-019-05142-6
Nishi, K., Nishi, A., Nagasawa, T., and Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19: 17–35, https://doi.org/10.1261/rna.034769.112 .
doi: 10.1261/rna.034769.112
Nishi, K., Takahashi, T., Suzawa, M., Miyakawa, T., Nagasawa, T., Ming, Y., Tanokura, M., and Ui-Tei, K. (2015). Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res. 43: 9856–9873, https://doi.org/10.1093/nar/gkv1026 .
doi: 10.1093/nar/gkv1026
Noland, C.L., Ma, E., and Doudna, J.A. (2011). siRNA repositioning for guide strand selection by human Dicer complexes. Mol. Cell 43: 110–121, https://doi.org/10.1016/j.molcel.2011.05.028 .
doi: 10.1016/j.molcel.2011.05.028
Park, M.S., Sim, G., Kehling, A.C., and Nakanishi, K. (2020). Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc. Natl. Acad. Sci. U. S. A. 117: 28576–28578, https://doi.org/10.1073/pnas.2015026117 .
doi: 10.1073/pnas.2015026117
Park, O.H., Ha, H., Lee, Y., Boo, S.H., Kwon, D.H., Song, H.K., and Kim, Y.K. (2019). Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol. Cell 74: 494–507 e498, https://doi.org/10.1016/j.molcel.2019.02.034 .
doi: 10.1016/j.molcel.2019.02.034
Parker, J.S., Roe, S.M., and Barford, D. (2005). Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434: 663–666, https://doi.org/10.1038/nature03462 .
doi: 10.1038/nature03462
Partin, A.C., Ngo, T.D., Herrell, E., Jeong, B.C., Hon, G., and Nam, Y. (2017). Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat. Commun. 8: 1737, https://doi.org/10.1038/s41467-017-01713-y .
doi: 10.1038/s41467-017-01713-y
Partin, A.C., Zhang, K., Jeong, B.C., Herrell, E., Li, S., Chiu, W., and Nam, Y. (2020). Cryo-EM structures of human Drosha and DGCR8 in complex with primary MicroRNA. Mol. Cell 78: 411–422 e414, https://doi.org/10.1016/j.molcel.2020.02.016 .
doi: 10.1016/j.molcel.2020.02.016
Pfaff, J., Hennig, J., Herzog, F., Aebersold, R., Sattler, M., Niessing, D., and Meister, G. (2013). Structural features of Argonaute-GW182 protein interactions. Proc. Natl. Acad. Sci. U. S. A. 110: E3770–E3779, https://doi.org/10.1073/pnas.1308510110 .
doi: 10.1073/pnas.1308510110
Piskounova, E., Viswanathan, S.R., Janas, M., LaPierre, R.J., Daley, G.Q., Sliz, P., and Gregory, R.I. (2008). Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283: 21310–21314, https://doi.org/10.1074/jbc.c800108200 .
doi: 10.1074/jbc.c800108200
Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., et al. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 57: eaam8526.
Qiu, C., McCann, K.L., Wine, R.N., Baserga, S.J., and Hall, T.M. (2014). A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Proc. Natl. Acad. Sci. U. S. A. 111: 18554–18559, https://doi.org/10.1073/pnas.1407634112 .
doi: 10.1073/pnas.1407634112
Quevillon Huberdeau, M., Zeitler, D.M., Hauptmann, J., Bruckmann, A., Fressigne, L., Danner, J., Piquet, S., Strieder, N., Engelmann, J.C., Jannot, G., et al.. (2017). Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 36, 2088–2106, https://doi.org/10.15252/embj.201696386 .
doi: 10.15252/embj.201696386
Quick-Cleveland, J., Jacob, J.P., Weitz, S.H., Shoffner, G., Senturia, R., and Guo, F. (2014). The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep. 7: 1994–2005, https://doi.org/10.1016/j.celrep.2014.05.013 .
doi: 10.1016/j.celrep.2014.05.013
Raisch, T., Chang, C.T., Levdansky, Y., Muthukumar, S., Raunser, S., and Valkov, E. (2019). Reconstitution of recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. Nat. Commun. 10: 3173, https://doi.org/10.1038/s41467-019-11094-z .
doi: 10.1038/s41467-019-11094-z
Raisch, T. and Valkov, E. (2022). Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr. Opin. Struct. Biol. 77: 102460, https://doi.org/10.1016/j.sbi.2022.102460 .
doi: 10.1016/j.sbi.2022.102460
Rasch, F., Weber, R., Izaurralde, E., and Igreja, C. (2020). 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev. 34: 847–860, https://doi.org/10.1101/gad.336073.119 .
doi: 10.1101/gad.336073.119
Rehwinkel, J., Behm-Ansmant, I., Gatfield, D., and Izaurralde, E. (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11: 1640–1647, https://doi.org/10.1261/rna.2191905 .
doi: 10.1261/rna.2191905
Rice, G.M., Shivashankar, V., Ma, E.J., Baryza, J.L., and Nutiu, R. (2020). Functional atlas of primary miRNA maturation by the microprocessor. Mol. Cell 80: 892–902 e894, https://doi.org/10.1016/j.molcel.2020.10.028 .
doi: 10.1016/j.molcel.2020.10.028
Rudel, S., Wang, Y., Lenobel, R., Korner, R., Hsiao, H.H., Urlaub, H., Patel, D., and Meister, G. (2011). Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39: 2330–2343, https://doi.org/10.1093/nar/gkq1032 .
doi: 10.1093/nar/gkq1032
Sarshad, A.A., Juan, A.H., Muler, A.I.C., Anastasakis, D.G., Wang, X., Genzor, P., Feng, X., Tsai, P.F., Sun, H.W., Haase, A.D., et al.. (2018). Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol. Cell 71: 1040–1050 e1048, https://doi.org/10.1016/j.molcel.2018.07.020 .
doi: 10.1016/j.molcel.2018.07.020
Sasse, A., Laverty, K.U., Hughes, T.R., and Morris, Q.D. (2018). Motif models for RNA-binding proteins. Curr. Opin. Struct. Biol. 53: 115–123, https://doi.org/10.1016/j.sbi.2018.08.001 .
doi: 10.1016/j.sbi.2018.08.001
Schirle, N.T. and MacRae, I.J. (2012). The crystal structure of human Argonaute2. Science 336: 1037–1040, https://doi.org/10.1126/science.1221551 .
doi: 10.1126/science.1221551
Schraivogel, D. and Meister, G. (2014). Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem. Sci. 39: 420–431, https://doi.org/10.1016/j.tibs.2014.07.004 .
doi: 10.1016/j.tibs.2014.07.004
Schraivogel, D., Schindler, S.G., Danner, J., Kremmer, E., Pfaff, J., Hannus, S., Depping, R., and Meister, G. (2015). Importin-beta facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res. 43: 7447–7461, https://doi.org/10.1093/nar/gkv705 .
doi: 10.1093/nar/gkv705
Schurmann, N., Trabuco, L.G., Bender, C., Russell, R.B., and Grimm, D. (2013). Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 20: 818–826, https://doi.org/10.1038/nsmb.2607 .
doi: 10.1038/nsmb.2607
Schwarz, D.S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199–208, https://doi.org/10.1016/s0092-8674(03)00759-1 .
doi: 10.1016/s0092-8674(03)00759-1
Sgromo, A., Raisch, T., Backhaus, C., Keskeny, C., Alva, V., Weichenrieder, O., and Izaurralde, E. (2018). Drosophila Bag-of-marbles directly interacts with the CAF40 subunit of the CCR4-NOT complex to elicit repression of mRNA targets. RNA 24: 381–395, https://doi.org/10.1261/rna.064584.117 .
doi: 10.1261/rna.064584.117
Shen, J., Xia, W., Khotskaya, Y.B., Huo, L., Nakanishi, K., Lim, S.O., Du, Y., Wang, Y., Chang, W.C., Chen, C.H., et al.. (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497: 383–387, https://doi.org/10.1038/nature12080 .
doi: 10.1038/nature12080
Sheu-Gruttadauria, J. and MacRae, I.J. (2018). Phase transitions in the assembly and function of human miRISC. Cell 173: 946–957 e916, https://doi.org/10.1016/j.cell.2018.02.051 .
doi: 10.1016/j.cell.2018.02.051
Sheu-Gruttadauria, J., Pawlica, P., Klum, S.M., Wang, S., Yario, T.A., Schirle Oakdale, N.T., Steitz, J.A., and MacRae, I.J. (2019). Structural basis for target-directed MicroRNA degradation. Mol. Cell 75: 1243–1255 e1247, https://doi.org/10.1016/j.molcel.2019.06.019 .
doi: 10.1016/j.molcel.2019.06.019
Shi, C.Y., Kingston, E.R., Kleaveland, B., Lin, D.H., Stubna, M.W., and Bartel, D.P. (2020). The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370: eabc9359.
Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., Liu, C., and He, C. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27: 315–328, https://doi.org/10.1038/cr.2017.15 .
doi: 10.1038/cr.2017.15
Shin, C.H., Lee, H., Kim, H.R., Choi, K.H., Joung, J.G., and Kim, H.H. (2017). Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p. Cell Death Differ. 24: 1861–1871, https://doi.org/10.1038/cdd.2017.106 .
doi: 10.1038/cdd.2017.106
Sim, G., Kehling, A.C., Park, M.S., Secor, J., Divoky, C., Zhang, H., Malhotra, N., Bhagdikar, D., Abd El-Wahab, E.W., and Nakanishi, K. (2022). Manganese-dependent microRNA trimming by 3′-->5′ exonucleases generates 14-nucleotide or shorter tiny RNAs. Proc. Natl. Acad. Sci. U. S. A. 119: e2214335119, https://doi.org/10.1073/pnas.2214335119 .
doi: 10.1073/pnas.2214335119
Slobodin, B., Han, R., Calderone, V., Vrielink, J., Loayza-Puch, F., Elkon, R., and Agami, R. (2017). Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169: 326–337 e312, https://doi.org/10.1016/j.cell.2017.03.031 .
doi: 10.1016/j.cell.2017.03.031
Smibert, P., Yang, J.S., Azzam, G., Liu, J.L., and Lai, E.C. (2013). Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20: 789–795, https://doi.org/10.1038/nsmb.2606 .
doi: 10.1038/nsmb.2606
Song, J.J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J., and Joshua-Tor, L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol. 10: 1026–1032, https://doi.org/10.1038/nsb1016 .
doi: 10.1038/nsb1016
Stupfler, B., Birck, C., Seraphin, B., and Mauxion, F. (2016). BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat. Commun. 7: 10811, https://doi.org/10.1038/ncomms10811 .
doi: 10.1038/ncomms10811
Su, S., Wang, J., Deng, T., Yuan, X., He, J., Liu, N., Li, X., Huang, Y., Wang, H.W., and Ma, J. (2022). Structural insights into dsRNA processing by Drosophila Dicer-2-Loqs-PD. Nature 607: 399–406, https://doi.org/10.1038/s41586-022-04911-x .
doi: 10.1038/s41586-022-04911-x
Suzawa, M., Noguchi, K., Nishi, K., Kozuka-Hata, H., Oyama, M., and Ui-Tei, K. (2017). Comprehensive identification of nuclear and cytoplasmic TNRC6A-associating proteins. J. Mol. Biol. 429: 3319–3333, https://doi.org/10.1016/j.jmb.2017.04.017 .
doi: 10.1016/j.jmb.2017.04.017
Suzuki, A., Igarashi, K., Aisaki, K., Kanno, J., and Saga, Y. (2010). NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc. Natl. Acad. Sci. U. S. A. 107: 3594–3599, https://doi.org/10.1073/pnas.0908664107 .
doi: 10.1073/pnas.0908664107
Thornton, J.E., Du, P., Jing, L., Sjekloca, L., Lin, S., Grossi, E., Sliz, P., Zon, L.I., and Gregory, R.I. (2014). Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Res. 42: 11777–11791, https://doi.org/10.1093/nar/gku805 .
doi: 10.1093/nar/gku805
Tominaga, K., Srikantan, S., Lee, E.K., Subaran, S.S., Martindale, J.L., Abdelmohsen, K., and Gorospe, M. (2011). Competitive regulation of nucleolin expression by HuR and miR-494. Mol. Cell. Biol. 31: 4219–4231, https://doi.org/10.1128/mcb.05955-11 .
doi: 10.1128/mcb.05955-11
Treiber, T., Treiber, N., and Meister, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20: 5–20, https://doi.org/10.1038/s41580-018-0059-1 .
doi: 10.1038/s41580-018-0059-1
Ustianenko, D., Hrossova, D., Potesil, D., Chalupnikova, K., Hrazdilova, K., Pachernik, J., Cetkovska, K., Uldrijan, S., Zdrahal, Z., and Vanacova, S. (2013). Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19: 1632–1638, https://doi.org/10.1261/rna.040055.113 .
doi: 10.1261/rna.040055.113
Uzonyi, A., Dierks, D., Nir, R., Kwon, O.S., Toth, U., Barbosa, I., Burel, C., Brandis, A., Rossmanith, W., Le Hir, H., et al.. (2023). Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 83: 237–251 e237, https://doi.org/10.1016/j.molcel.2022.12.026 .
doi: 10.1016/j.molcel.2022.12.026
Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., Blue, S.M., Chen, J.Y., Cody, N.A.L., Dominguez, D., et al.. (2020). A large-scale binding and functional map of human RNA-binding proteins. Nature 583: 711–719, https://doi.org/10.1038/s41586-020-2077-3 .
doi: 10.1038/s41586-020-2077-3
Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al.. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505: 117–120, https://doi.org/10.1038/nature12730 .
doi: 10.1038/nature12730
Wang, X., McLachlan, J., Zamore, P.D., and Hall, T.M. (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell 110: 501–512, https://doi.org/10.1016/s0092-8674(02)00873-5 .
doi: 10.1016/s0092-8674(02)00873-5
Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161: 1388–1399, https://doi.org/10.1016/j.cell.2015.05.014 .
doi: 10.1016/j.cell.2015.05.014
Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Rendtlew Danielsen, J.M., Yang, Y.G., and Qi, Y. (2012). A role for small RNAs in DNA double-strand break repair. Cell 149: 101–112, https://doi.org/10.1016/j.cell.2012.03.002 .
doi: 10.1016/j.cell.2012.03.002
Weidmann, C.A. and Goldstrohm, A.C. (2012). Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol. Cell. Biol. 32: 527–540, https://doi.org/10.1128/mcb.06052-11 .
doi: 10.1128/mcb.06052-11
Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H., and Meister, G. (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136: 496–507, https://doi.org/10.1016/j.cell.2008.12.023 .
doi: 10.1016/j.cell.2008.12.023
Weitz, S.H., Gong, M., Barr, I., Weiss, S., and Guo, F. (2014). Processing of microRNA primary transcripts requires heme in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 111: 1861–1866, https://doi.org/10.1073/pnas.1309915111 .
doi: 10.1073/pnas.1309915111
Welte, T., Goulois, A., Stadler, M.B., Hess, D., Soneson, C., Neagu, A., Azzi, C., Wisser, M.J., Seebacher, J., Schmidt, I., et al. (2023). Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 83: 2478–2492.e8, https://doi.org/10.1016/j.molcel.2023.06.001 .
doi: 10.1016/j.molcel.2023.06.001
Willkomm, S., Jakob, L., Kramm, K., Graus, V., Neumeier, J., Meister, G., and Grohmann, D. (2022). Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat. Commun. 13: 3825, https://doi.org/10.1038/s41467-022-31480-4 .
doi: 10.1038/s41467-022-31480-4
Yamaguchi, S., Naganuma, M., Nishizawa, T., Kusakizako, T., Tomari, Y., Nishimasu, H., and Nureki, O. (2022). Structure of the Dicer-2-R2D2 heterodimer bound to a small RNA duplex. Nature 607: 393–398, https://doi.org/10.1038/s41586-022-04790-2 .
doi: 10.1038/s41586-022-04790-2
Yamaji, M., Jishage, M., Meyer, C., Suryawanshi, H., Der, E., Yamaji, M., Garzia, A., Morozov, P., Manickavel, S., McFarland, H.L., et al.. (2017). DND1 maintains germline stem cells via recruitment of the CCR4-NOT complex to target mRNAs. Nature 543: 568–572, https://doi.org/10.1038/nature21690 .
doi: 10.1038/nature21690
Yan, W., Zhang, Y., and Chen, X. (2017). TAp63gamma and DeltaNp63gamma are regulated by RBM38 via mRNA stability and have an opposing function in growth suppression. Oncotarget 8: 78327–78339, https://doi.org/10.18632/oncotarget.18463 .
doi: 10.18632/oncotarget.18463
Yang, X., Triboulet, R., Liu, Q., Sendinc, E., and Gregory, R.I. (2022). Exon junction complex shapes the m(6)A epitranscriptome. Nat. Commun. 13: 7904, https://doi.org/10.1038/s41467-022-35643-1 .
doi: 10.1038/s41467-022-35643-1
Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17: 3011–3016, https://doi.org/10.1101/gad.1158803 .
doi: 10.1101/gad.1158803
Yoon, J.H., Jo, M.H., White, E.J., De, S., Hafner, M., Zucconi, B.E., Abdelmohsen, K., Martindale, J.L., Yang, X., Wood, W.H.3rd, et al.. (2015). AUF1 promotes let-7b loading on Argonaute 2. Genes Dev. 29: 1599–1604, https://doi.org/10.1101/gad.263749.115 .
doi: 10.1101/gad.263749.115
Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y.J., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B., Saltzberg, D., Soniat, M., et al.. (2018). Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173: 693–705 e622, https://doi.org/10.1016/j.cell.2018.03.003 .
doi: 10.1016/j.cell.2018.03.003
Youn, J.Y., Dunham, W.H., Hong, S.J., Knight, J.D.R., Bashkurov, M., Chen, G.I., Bagci, H., Rathod, B., MacLeod, G., Eng, S.W.M., et al.. (2018). High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69: 517–532 e511, https://doi.org/10.1016/j.molcel.2017.12.020 .
doi: 10.1016/j.molcel.2017.12.020
Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N., and Dixon, D.A. (2012). The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol. Cancer Res. 10: 167–180, https://doi.org/10.1158/1541-7786.mcr-11-0337 .
doi: 10.1158/1541-7786.mcr-11-0337
Zaccara, S. and Jaffrey, S.R. (2020). A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181: 1582–1595 e1518, https://doi.org/10.1016/j.cell.2020.05.012 .
doi: 10.1016/j.cell.2020.05.012
Zamore, P.D., Williamson, J.R., and Lehmann, R. (1997). The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3: 1421–1433.
Zapletal, D., Taborska, E., Pasulka, J., Malik, R., Kubicek, K., Zanova, M., Much, C., Sebesta, M., Buccheri, V., Horvat, F., et al.. (2022). Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 82: 4064–4079 e4013, https://doi.org/10.1016/j.molcel.2022.10.010 .
doi: 10.1016/j.molcel.2022.10.010
Zeng, Y., Sankala, H., Zhang, X., and Graves, P.R. (2008). Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413: 429–436, https://doi.org/10.1042/bj20080599 .
doi: 10.1042/bj20080599
Zhang, T., Wu, Y.C., Mullane, P., Ji, Y.J., Liu, H., He, L., Arora, A., Hwang, H.Y., Alessi, A.F., Niaki, A.G., et al.. (2018). FUS regulates activity of MicroRNA-mediated gene silencing. Mol. Cell 69: 787–801 e788, https://doi.org/10.1016/j.molcel.2018.02.001 .
doi: 10.1016/j.molcel.2018.02.001
Zhang, Z., Theler, D., Kaminska, K.H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., Heinrich, B., Bujnicki, J.M., Allain, F.H., et al.. (2010). The YTH domain is a novel RNA binding domain. J. Biol. Chem. 285: 14701–14710, https://doi.org/10.1074/jbc.m110.104711 .
doi: 10.1074/jbc.m110.104711
Zhuang, R., Rao, J.N., Zou, T., Liu, L., Xiao, L., Cao, S., Hansraj, N.Z., Gorospe, M., and Wang, J.Y. (2013). miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res. 41: 7905–7919, https://doi.org/10.1093/nar/gkt565 .
doi: 10.1093/nar/gkt565