A Navigation Path Search and Optimization Method for Mobile Robots Based on the Rat Brain's Cognitive Mechanism.

boundary vector cells mobile robots navigation path optimization place cells

Journal

Biomimetics (Basel, Switzerland)
ISSN: 2313-7673
Titre abrégé: Biomimetics (Basel)
Pays: Switzerland
ID NLM: 101719189

Informations de publication

Date de publication:
14 Sep 2023
Historique:
received: 22 07 2023
revised: 11 09 2023
accepted: 11 09 2023
medline: 27 9 2023
pubmed: 27 9 2023
entrez: 27 9 2023
Statut: epublish

Résumé

Rats possess exceptional navigational abilities, allowing them to adaptively adjust their navigation paths based on the environmental structure. This remarkable ability is attributed to the interactions and regulatory mechanisms among various spatial cells within the rat's brain. Based on these, this paper proposes a navigation path search and optimization method for mobile robots based on the rat brain's cognitive mechanism. The aim is to enhance the navigation efficiency of mobile robots. The mechanism of this method is based on developing a navigation habit. Firstly, the robot explores the environment to search for the navigation goal. Then, with the assistance of boundary vector cells, the greedy strategy is used to guide the robot in generating a locally optimal path. Once the navigation path is generated, a dynamic self-organizing model based on the hippocampal CA1 place cells is constructed to further optimize the navigation path. To validate the effectiveness of the method, this paper designs several 2D simulation experiments and 3D robot simulation experiments, and compares the proposed method with various algorithms. The experimental results demonstrate that the proposed method not only surpasses other algorithms in terms of path planning efficiency but also yields the shortest navigation path. Moreover, the method exhibits good adaptability to dynamic navigation tasks.

Identifiants

pubmed: 37754178
pii: biomimetics8050427
doi: 10.3390/biomimetics8050427
pmc: PMC10526878
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : National Natural Science Foundation of China
ID : 62076014
Organisme : Beijing Municipal Education Commission and Municipal Natural Science Foundation
ID : KZ202010005004
Organisme : Natural Science Foundation of Beijing
ID : 4162012

Références

Nature. 2021 Aug;596(7872):404-409
pubmed: 34381211
Nature. 2022 Feb;602(7895):123-128
pubmed: 35022611
IEEE Trans Cybern. 2022 Jan;52(1):508-521
pubmed: 32275629
Nature. 2018 May;557(7705):429-433
pubmed: 29743670
PLoS Comput Biol. 2013 Apr;9(4):e1003024
pubmed: 23592970
Eur J Neurosci. 2012 Mar;35(6):916-31
pubmed: 22393918
Nat Neurosci. 2017 Oct 26;20(11):1448-1464
pubmed: 29073644
PLoS Comput Biol. 2021 Jun 10;17(6):e1009017
pubmed: 34111110
Rev Neurosci. 2006;17(1-2):71-97
pubmed: 16703944
Nat Neurosci. 2018 Aug;21(8):1096-1106
pubmed: 30038279
Nat Rev Neurosci. 2020 Sep;21(9):453-470
pubmed: 32764728
CNS Neurosci Ther. 2022 Mar;28(3):448-457
pubmed: 34964261
Hippocampus. 2021 Dec;31(12):1285-1299
pubmed: 34606152
Nature. 2022 Jan;601(7891):105-109
pubmed: 34853473
Hippocampus. 2022 Oct;32(10):716-730
pubmed: 36123766
Elife. 2017 Jul 10;6:
pubmed: 28691903
Nat Neurosci. 2021 Nov;24(11):1567-1573
pubmed: 34381241
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Apr 25;39(2):217-227
pubmed: 35523542
Nature. 2022 Jul;607(7920):741-746
pubmed: 35794477
Neuron. 2015 Aug 5;87(3):507-20
pubmed: 26247860
Neural Netw. 2020 Jan;121:37-51
pubmed: 31526953
J Comput Neurosci. 2008 Dec;25(3):481-500
pubmed: 18431616
IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2147-2158
pubmed: 34860654

Auteurs

Yishen Liao (Y)

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China.
Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China.

Naigong Yu (N)

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China.
Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China.

Jinhan Yan (J)

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China.
Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China.

Classifications MeSH