Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem.

antibiotic resistance genes microbiome phage-bacterial interactions virome

Journal

Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614

Informations de publication

Date de publication:
27 Sep 2023
Historique:
medline: 27 9 2023
pubmed: 27 9 2023
entrez: 27 9 2023
Statut: aheadofprint

Résumé

Agricultural microbiomes are major reservoirs of antibiotic resistance genes (ARGs), posing continuous risks to human health. To understand the role of bacteriophages as vehicles for the horizontal transfer of ARGs in the agricultural microbiome, we investigated the diversity of bacterial and viral microbiota from fecal and environmental samples on an organic farm. The profiles of the microbiome indicated the highest abundance of Bacteroidetes, Firmicutes, and Proteobacteria phyla in animal feces, with varying Actinobacteria and Spirochaetes abundance across farm animals. The most predominant composition in environmental samples was the phylum Proteobacteria. Compared to the microbiome profiles, the trends in virome indicated much broader diversity with more specific signatures between the fecal and environmental samples. Overall, viruses belonging to the order Caudovirales were the most prevalent across the agricultural samples. Additionally, the similarities within and between fecal and environmental components of the agricultural environment based on ARG-associated bacteria alone were much lower than those of total microbiome composition. However, there were significant similarities in the profiles of ARG-associated viruses across the fecal and environmental components. Moreover, the predictive models of phage-bacterial interactions on bipartite ARG transfer networks indicated that phages belonging to the order Caudovirales, particularly in the Siphoviridae family, contained diverse ARG types in different samples. Their interaction with various bacterial hosts further implied the important role of bacteriophages in ARG transmission across bacterial populations. Our findings provided a novel insight into the potential mechanisms of phage-mediated ARG transmission and their correlation with resistome evolution in natural agricultural environments. IMPORTANCE Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.

Identifiants

pubmed: 37754684
doi: 10.1128/spectrum.00226-23
pmc: PMC10581182
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0022623

Références

Geohealth. 2021 Feb 01;5(2):e2020GH000294
pubmed: 33709047
Nat Rev Microbiol. 2018 Dec;16(12):760-773
pubmed: 30104690
Sci Total Environ. 2019 Feb 25;653:1513-1521
pubmed: 30759585
J Hazard Mater. 2022 Feb 15;424(Pt C):127564
pubmed: 34736202
Bioessays. 2017 Dec;39(12):
pubmed: 28983932
PLoS One. 2016 Oct 5;11(10):e0163962
pubmed: 27706213
New Microbes New Infect. 2017 May 24;19:28-33
pubmed: 28702199
ACS Infect Dis. 2020 Feb 14;6(2):168-172
pubmed: 31855407
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
J Virol. 2020 May 4;94(10):
pubmed: 32132234
Int J Antimicrob Agents. 2016 Aug;48(2):163-7
pubmed: 27312355
Front Microbiol. 2017 Sep 28;8:1870
pubmed: 29033917
Nat Rev Genet. 2005 Nov;6(11):805-14
pubmed: 16304596
Viruses. 2016 Mar 01;8(3):66
pubmed: 26938550
J Antimicrob Chemother. 2020 Nov 1;75(11):3173-3180
pubmed: 32719862
ISME J. 2010 May;4(5):648-59
pubmed: 20090786
BMC Microbiol. 2018 Feb 13;18(1):11
pubmed: 29439665
Bioinformatics. 2015 May 15;31(10):1674-6
pubmed: 25609793
Microb Pathog. 2020 Dec;149:104350
pubmed: 32561419
ISME J. 2017 Jan;11(1):237-247
pubmed: 27326545
Front Microbiol. 2012 Jan 18;3:2
pubmed: 22279444
Environ Pollut. 2019 May;248:438-447
pubmed: 30826606
Viruses. 2020 Jan 16;12(1):
pubmed: 31963174
Adv Appl Microbiol. 2014;89:135-83
pubmed: 25131402
Sci Rep. 2019 Jan 9;9(1):11
pubmed: 30626904
Front Microbiol. 2018 Oct 16;9:2474
pubmed: 30459724
Viruses. 2019 May 17;11(5):
pubmed: 31109012
Front Microbiol. 2018 Mar 13;9:448
pubmed: 29593692
Antibiotics (Basel). 2022 Apr 14;11(4):
pubmed: 35453275
Plasmid. 2015 May;79:1-7
pubmed: 25597519
Arch Virol. 2016 Apr;161(4):887-97
pubmed: 26965436
J Bacteriol. 2004 Jun;186(12):3677-86
pubmed: 15175280
Int J Hyg Environ Health. 2020 Mar;224:113440
pubmed: 31978735
FEMS Microbiol Rev. 2018 Jan 1;42(1):
pubmed: 29069382
J Antibiot (Tokyo). 2021 Aug;74(8):508-518
pubmed: 34103703
Environ Microbiol. 2009 Dec;11(12):2970-88
pubmed: 19601960
Front Microbiol. 2019 Jan 29;10:52
pubmed: 30761104
Front Microbiol. 2011 Jul 26;2:158
pubmed: 21845185
Public Health Rep. 2012 Jan-Feb;127(1):4-22
pubmed: 22298919
Environ Sci Technol. 2018 Jun 5;52(11):6113-6125
pubmed: 29741366
Environ Int. 2018 Jun;115:133-141
pubmed: 29567433
Mob Genet Elements. 2013 Jul 1;3(4):e25847
pubmed: 24195016
Int J Environ Res Public Health. 2020 Jan 10;17(2):
pubmed: 31936874
J Dairy Sci. 2014 Dec;97(12):7402-12
pubmed: 25282417
Osong Public Health Res Perspect. 2019 Feb;10(1):25-31
pubmed: 30847268
Transbound Emerg Dis. 2019 May;66(3):1379-1386
pubmed: 30873724
Appl Environ Microbiol. 2020 Mar 2;86(6):
pubmed: 31924621
Virol J. 2012 Sep 24;9:218
pubmed: 23006778
Nat Biotechnol. 2023 Feb 23;:
pubmed: 36823356
Nucleic Acids Res. 2020 Jan 8;48(D1):D561-D569
pubmed: 31722416
PLoS One. 2020 Jun 11;15(6):e0234438
pubmed: 32525945
Viruses. 2020 Jan 28;12(2):
pubmed: 32012814
Curr Opin Microbiol. 2010 Oct;13(5):589-94
pubmed: 20850375
BMC Microbiol. 2013 Nov 01;13:242
pubmed: 24180266
Front Microbiol. 2021 Mar 22;12:621126
pubmed: 33828537
J Hazard Mater. 2020 Dec 5;400:123170
pubmed: 32590136
Environ Pollut. 2018 Apr;235:571-575
pubmed: 29331890
BMC Genomics. 2019 Jun 6;20(Suppl 5):423
pubmed: 31167634
Sci Total Environ. 2023 May 10;872:162125
pubmed: 36773904
Genes (Basel). 2019 Jun 03;10(6):
pubmed: 31163637
Trends Microbiol. 2013 Feb;21(2):82-91
pubmed: 23245704
J Hazard Mater. 2018 Sep 5;357:53-62
pubmed: 29860105
Appl Environ Microbiol. 2004 Oct;70(10):5842-6
pubmed: 15466522
Emerg Microbes Infect. 2018 Oct 10;7(1):168
pubmed: 30302018
Front Microbiol. 2019 Apr 02;10:627
pubmed: 31001216
Appl Environ Microbiol. 2009 May;75(9):2940-4
pubmed: 19270114
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Curr Opin Biotechnol. 2008 Jun;19(3):260-5
pubmed: 18534838
Ecotoxicol Environ Saf. 2019 Sep 30;180:114-122
pubmed: 31078018
ISME J. 2019 Nov;13(11):2856-2867
pubmed: 31358910
Water Res. 2020 Feb 1;169:115250
pubmed: 31726395

Auteurs

Yujie Zhang (Y)

U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center , Albany, California, USA.

Ai Kitazumi (A)

Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas, USA.

Yen-Te Liao (YT)

U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center , Albany, California, USA.

Benildo G de Los Reyes (BG)

Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas, USA.

Vivian C H Wu (VCH)

U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center , Albany, California, USA.

Classifications MeSH