Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using

Deep learning Lymph node metastasis Non-small cell lung cancer Positron emission tomography

Journal

Annals of nuclear medicine
ISSN: 1864-6433
Titre abrégé: Ann Nucl Med
Pays: Japan
ID NLM: 8913398

Informations de publication

Date de publication:
27 Sep 2023
Historique:
received: 06 05 2023
accepted: 11 09 2023
medline: 27 9 2023
pubmed: 27 9 2023
entrez: 27 9 2023
Statut: aheadofprint

Résumé

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.

Identifiants

pubmed: 37755604
doi: 10.1007/s12149-023-01866-5
pii: 10.1007/s12149-023-01866-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 22K15879

Informations de copyright

© 2023. The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine.

Références

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708 .
doi: 10.3322/caac.21708 pubmed: 35020204
Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87. https://doi.org/10.1016/j.jtho.2021.11.003 .
doi: 10.1016/j.jtho.2021.11.003 pubmed: 34808341
Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. Non-small cell lung cancer, version 1.2015. J Natl Compr Canc Netw Version 12015. 2014;12:1738–61. https://doi.org/10.6004/jnccn.2014.0176 .
doi: 10.6004/jnccn.2014.0176
Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e211S – e250. https://doi.org/10.1378/chest.12-2355 .
doi: 10.1378/chest.12-2355 pubmed: 23649440
Schimmer C, Neukam K, Elert O. Staging of non-small cell lung cancer: clinical value of positron emission tomography and mediastinoscopy. Interact Cardiovasc Thorac Surg. 2006;5:418–23. https://doi.org/10.1510/icvts.2006.129478 .
doi: 10.1510/icvts.2006.129478 pubmed: 17670605
Billé A, Pelosi E, Skanjeti A, Arena V, Errico L, Borasio P, et al. Preoperative intrathoracic lymph node staging in patients with non-small-cell lung cancer: accuracy of integrated positron emission tomography and computed tomography. Eur J Cardiothorac Surg. 2009;36:440–5. https://doi.org/10.1016/j.ejcts.2009.04.003 .
doi: 10.1016/j.ejcts.2009.04.003 pubmed: 19464906
Ose N, Sawabata N, Minami M, Inoue M, Shintani Y, Kadota Y, et al. Lymph node metastasis diagnosis using positron emission tomography with 2-[18F] fluoro-2-deoxy-D-glucose as a tracer and computed tomography in surgical cases of non-small cell lung cancer. Eur J Cardiothorac Surg. 2012;42:89–92. https://doi.org/10.1093/ejcts/ezr287 .
doi: 10.1093/ejcts/ezr287 pubmed: 22290887
Wo Y, Li H, Zhang Y, Peng Y, Wu Z, Liu P, et al. The impact of station 4L lymph node dissection on short-term and long-term outcomes in non-small cell lung cancer. Lung Cancer. 2022;170:141–7. https://doi.org/10.1016/j.lungcan.2022.06.018 .
doi: 10.1016/j.lungcan.2022.06.018 pubmed: 35780588
Zhao Y, Mao Y, He J, Gao S, Zhang Z, Ding N, et al. Lobe-specific lymph node dissection in clinical stage IA solid-dominant non-small-cell lung cancer: a propensity score matching study. Clin Lung Cancer. 2021;22:e201–10. https://doi.org/10.1016/j.cllc.2020.09.012 .
doi: 10.1016/j.cllc.2020.09.012 pubmed: 33187913
Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Ann Transl Med. 2021;9:823. https://doi.org/10.21037/atm-20-6162 .
doi: 10.21037/atm-20-6162 pubmed: 34268436 pmcid: 8246218
Tau N, Stundzia A, Yasufuku K, Hussey D, Metser U. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images. AJR Am J Roentgenol. 2020;215:192–7. https://doi.org/10.2214/AJR.19.22346 .
doi: 10.2214/AJR.19.22346 pubmed: 32348182
Ouyang ML, Zheng RX, Wang YR, Zuo Z, Gu L, Tian Y, et al. Deep learning analysis using 18F-FDG PET/CT to predict occult lymph node metastasis in patients with clinical N0 lung adenocarcinoma. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.915871 .
doi: 10.3389/fonc.2022.915871 pubmed: 36713571 pmcid: 9730882
Wallis D, Soussan M, Lacroix M, Akl P, Duboucher C, Buvat I. An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients. Eur J Nucl Med Mol Imaging. 2022;49:881–8. https://doi.org/10.1007/s00259-021-05513-x .
doi: 10.1007/s00259-021-05513-x pubmed: 34519888
Kawauchi K, Furuya S, Hirata K, Katoh C, Manabe O, Kobayashi K, et al. A convolutional neural network-based system to classify patients using FDG PET/CT examinations. BMC Cancer. 2020;20:227. https://doi.org/10.1186/s12885-020-6694-x .
doi: 10.1186/s12885-020-6694-x pubmed: 32183748 pmcid: 7077155
Seeing more with PET scans: scientists discover new chemistry for medical images | Berkeley lab—news center. https://newscenter.lbl.gov/2017/07/27/new-chemistry-pet-scans-medical-imaging/ . Accessed 18 Dec 2022
Nishiyama Y, Kinuya S, Kato T, Kayano D, Sato S, Tashiro M, et al. Nuclear medicine practice in Japan: a report of the eighth nationwide survey in 2017. Ann Nucl Med. 2019;33:725–32. https://doi.org/10.1007/s12149-019-01382-5 .
doi: 10.1007/s12149-019-01382-5 pubmed: 31236776
Waller J, O’Connor A, Rafaat E, Amireh A, Dempsey J, Martin C, et al. Applications and challenges of artificial intelligence in diagnostic and interventional radiology. Pol J Radiol. 2022;87:e113–7. https://doi.org/10.5114/pjr.2022.113531 .
doi: 10.5114/pjr.2022.113531 pubmed: 35280945 pmcid: 8906183
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7 .
doi: 10.1007/s10278-013-9622-7 pubmed: 23884657 pmcid: 3824915
Machtay M, Duan F, Siegel BA, Snyder BS, Gorelick JJ, Reddin JS, et al. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol. 2013;31:3823–30. https://doi.org/10.1200/JCO.2012.47.5947 .
doi: 10.1200/JCO.2012.47.5947 pubmed: 24043740 pmcid: 3795891
Kinahan P, Muzi M, Bialecki B, Herman B, Coombs L. Data from the ACRIN 6668 Trial NSCLC-FDG-PET. The Cancer Imaging Arch. 2019. https://doi.org/10.7937/tcia.2019.30ilqfcl .
Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology. 2012;264:387–96. https://doi.org/10.1148/radiol.12111607 .
doi: 10.1148/radiol.12111607 pubmed: 22723499 pmcid: 3401348
Bakr S, Gevaert O, Echegaray S, et al. Data for NSCLC radiogenomics collection. Cancer Imaging Arch. 2017. https://doi.org/10.7937/K9/TCIA.2017.7hs46erv .
doi: 10.7937/K9/TCIA.2017.7hs46erv
National Cancer Institute clinical proteomic tumor analysis consortium (CPTAC). The clinical proteomic tumor analysis consortium lung squamous cell carcinoma collection (CPTAC-LSCC). 13th version. The Cancer Imaging Arch. 2018. https://doi.org/10.7937/K9/TCIA.2018.6EMUB5L2
National Cancer Institute clinical proteomic tumor analysis consortium (CPTAC). The clinical proteomic tumor analysis consortium lung adenocarcinoma collection (CPTAC-LUAD). 11th version. Cancer Imaging Arch. 2018. https://doi.org/10.7937/K9/TCIA.2018.PAT12TBS
Kirk S, Lee Y, Kumar P, et al. The cancer genome Atlas lung squamous cell carcinoma collection (TCGA-LUSC). 4th version . The Cancer Imaging Arch. 2016. https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ
Albertina B, Watson M, Holback C, et al. Radiology Data from the Cancer Genome Atlas Lung adenocarcinoma [TCGA-LUAD] collection. The Cancer Imaging Arch. 2016. https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5 .
doi: 10.7937/K9/TCIA.2016.JGNIHEP5
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of IEEE comput soc conf comput vis pattern recognit; 2016;2016-December;p. 770–8. https://doi.org/10.1109/CVPR.2016.90
Han Y, Ma Y, Wu Z, et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Eur J Nucl Med Mol Imaging. 2020;48(2):350–60. https://doi.org/10.1007/S00259-020-04771-5 .
doi: 10.1007/S00259-020-04771-5 pubmed: 32776232
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2016. https://doi.org/10.1007/s11263-019-01228-7 .
doi: 10.1007/s11263-019-01228-7
Girum KB, Rebaud L, Cottereau AS, Meignan M, Clerc J, Vercellino L, et al. 18F-FDG PET maximum-intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients. J Nucl Med. 2022;63:1925–32. https://doi.org/10.2967/jnumed.121.263501 .
doi: 10.2967/jnumed.121.263501 pubmed: 35710733 pmcid: 9730929
Rodríguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290:305–14. https://doi.org/10.1148/radiol.2018181371 .
doi: 10.1148/radiol.2018181371 pubmed: 30457482
Lebovitz S, Levina N, Lifshitz-Assa H. Is AI ground truth really true? The dangers of training and evaluating AI tools based on experts’ know-what. MIS Q. 2021;45:1501–26. https://doi.org/10.25300/MISQ/2021/16564 .
doi: 10.25300/MISQ/2021/16564
Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022;32:7998–8007. https://doi.org/10.1007/s00330-022-08784-6 .
doi: 10.1007/s00330-022-08784-6 pubmed: 35420305 pmcid: 9668941
Chen L, Zhou Z, Sher D, Zhang Q, Shah J, Pham NL, et al. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys Med Biol. 2019;64: 075011. https://doi.org/10.1088/1361-6560/ab083a .
doi: 10.1088/1361-6560/ab083a pubmed: 30780137 pmcid: 7178778
Leal JP, Rowe SP, Stearns V, Connolly RM, Vaklavas C, Liu MC, et al. Automated lesion detection of breast cancer in [18F] FDG PET/CT using a novel AI-Based workflow. Front Oncol. 2022;12:1007874. https://doi.org/10.3389/fonc.2022.1007874 .
doi: 10.3389/fonc.2022.1007874 pubmed: 36457510 pmcid: 9705734

Auteurs

Eitaro Kidera (E)

Department of Radiology, Kishiwada City Hospital, Kishiwada, Japan.
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Sho Koyasu (S)

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. sho@kuhp.kyoto-u.ac.jp.

Kenji Hirata (K)

Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Masatsugu Hamaji (M)

Department of Thoracic Surgery, Kyoto University Hospital, Kyoto University, Kyoto, Japan.

Ryusuke Nakamoto (R)

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Yuji Nakamoto (Y)

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Classifications MeSH