Facet-dependent U(VI) removal of hematite with confined ferrous ions.
Crystal facet
Fe(II)
Hematite
Iron oxides
Nanomaterials
Reduction
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
04
04
2023
accepted:
19
09
2023
medline:
6
11
2023
pubmed:
28
9
2023
entrez:
27
9
2023
Statut:
ppublish
Résumé
The presence of ferrous minerals has been demonstrated to have a significant impact on the destiny, migration, and availability of uranyl (U(VI)) in natural surroundings. The iron oxide/Fe(II) system is a multifaceted iron reduction system anchored to surfaces, encompassing various forms of iron and ferrous ions. Several studies have investigated the effectiveness of adsorbed ferrous iron on iron-based minerals to facilitate the reduction of heavy metal ions and radioactive nuclides. A range of techniques for characterization, including X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy, were employed to explore the process of U(VI) adsorption and deposition, focusing on the limited region containing ferrous iron on the exposed crystalline surface of hematite. In this specific investigation, two kinds of hematite nanocrystals primarily exposing {001} and {012} crystal facets, referred to as HNPs and HNCs, were synthesized. Their ability to remove U(VI) was examined. Ferrous ions (Fe(II)) adsorbed onto the surface of hematite nanocrystals significantly enhanced the efficiency of U(VI) remediation. Furthermore, the HNCs/Fe(II) system showed better U(VI) reduction ability than the HNPs/Fe(II) system. Remarkably, HNCs produced and consumed more electrons and hydroxyl radicals, indicating a more intense response. This finding serves to highlight the significance of their role in interfacial effects and in predicting the spatial distribution of U(VI) in aqueous systems.
Identifiants
pubmed: 37759062
doi: 10.1007/s11356-023-30044-3
pii: 10.1007/s11356-023-30044-3
doi:
Substances chimiques
ferric oxide
1K09F3G675
Iron
E1UOL152H7
Ferric Compounds
0
Minerals
0
Ferrous Compounds
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
109077-109086Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alexandrov V, Rosso KM (2015) Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Phys Chem Chem Phys 17:14518–14531
doi: 10.1039/C5CP00921A
Cai Y, Wu C, Liu Z, Zhang L, Chen L, Wang J, Wang X, Yang S, Wang S (2017) Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(vi). Environ Sci Nano 4:1876–1886
doi: 10.1039/C7EN00412E
Cai Y, Zhang Y, Lv Z, Zhang S, Gao F, Fang M, Kong M, Liu P, Tan X, Hu B, Wang X (2022) Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl Catal Environ 310:121343
doi: 10.1016/j.apcatb.2022.121343
Catalano JG, Fenter P, Park C, Zhang Z, Rosso KM (2010) Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. Geochim Cosmochim Acta 74:1498–1512
doi: 10.1016/j.gca.2009.12.018
Chatman S, Zarzycki P, Rosso KM (2013) Surface potentials of (001), (012), (113) hematite (α-Fe
doi: 10.1039/c3cp52592a
Chen J, Wu H, Sheng G, Li H, Li M, Guo X, Dong H (2022) Graphene oxide-mediated the reduction of U(VI), Re(VII), Se(VI) and Se(IV) by Fe(II) in aqueous solutions investigated via combined batch, DFT calculation and spectroscopic approaches. Chem Eng J 433:133844
doi: 10.1016/j.cej.2021.133844
Chen L, Yang X, Chen J, Liu J, Wu H, Zhan H, Liang C, Wu M (2010) Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg Chem 49:8411–8420
doi: 10.1021/ic100919a
Chernyshova IV, Hochella MF, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9:1736–1750
doi: 10.1039/b618790k
Ding C, Cheng W, Nie X, Yi F (2017) Synergistic mechanism of U(VI) sequestration by magnetite-graphene oxide composites: evidence from spectroscopic and theoretical calculation. Chem Eng J 324:113–121
doi: 10.1016/j.cej.2017.05.023
Frierdich AJ, Beard BL, Reddy TR, Scherer MM, Johnson CM (2014) Iron isotope fractionation between aqueous Fe(II) and goethite revisited: new insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification. Geochim Cosmochim Acta 139:383–398
doi: 10.1016/j.gca.2014.05.001
Gao F, Fang M, Zhang S, Ni M, Cai Y, Zhang Y, Tan X, Kong M, Xu W, Wang X (2022) Symmetry-breaking induced piezocatalysis of Bi
doi: 10.1016/j.apcatb.2022.121664
Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral–water interface reactions of actinides. Chem Rev 113:1016–1062
doi: 10.1021/cr300370h
Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut (Barking, Essex : 1987) 240, 493-505
Guo T, Jiang L, Wang K, Li Y, Huang H, Wu X, Zhang G (2021) Efficient persulfate activation by hematite nanocrystals for degradation of organic pollutants under visible light irradiation: Facet-dependent catalytic performance and degradation mechanism. Appl Catal Environ 286:119883
doi: 10.1016/j.apcatb.2021.119883
Hiemstra T, Riemsdijk WHV, Rossberg A, Ulrich K-U (2009) A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate. Geochim Cosmochim Acta 73:4437–4451
doi: 10.1016/j.gca.2009.04.035
Huang LL, Luo X, Zhu L (2008) Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays. J Phys Chem C 112:1468–1472
doi: 10.1021/jp710106y
Huang X, Hou X, Song F, Zhao J, Zhang L (2016) Facet-dependent Cr(VI) adsorption of hematite nanocrystals. Environ Sci Technol 50:1964–1972
doi: 10.1021/acs.est.5b05111
Huang X, Hou X, Zhang X, Rosso KM, Zhang L (2018) Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environ Sci Nano 5:1790–1806
doi: 10.1039/C8EN00548F
Huang X, Hou X, Wang F, Guo B, Song F, Ling L, Zhao J, Zhang L (2019) Molecular-scale structures of uranyl surface complexes on hematite facets. Environ Sci Nano 6:892–903
doi: 10.1039/C8EN00899J
Jeon B-H, Dempsey BA, Burgos WD (2003a) Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ Sci Technol 37:3309–3315
doi: 10.1021/es025900p
Jeon B-H, Dempsey BA, Burgos WD, Royer RA (2003b) Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Water Res 37:4135–4142
doi: 10.1016/S0043-1354(03)00342-7
Larese-Casanova P, Scherer MM (2007) Fe(II) sorption on hematite: New insights based on spectroscopic measurements. Environ Sci Technol 41:471–477
doi: 10.1021/es0617035
Lenhart JJ, Honeyman BD (1999) Uranium(VI) sorption to hematite in the presence of humic acid. Geochim Cosmochim Acta 63:2891–2901
doi: 10.1016/S0016-7037(99)00269-0
Li D, Kaplan DI (2012) Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe (hydr)oxides: a review. J Hazard Mater 243:1–18
doi: 10.1016/j.jhazmat.2012.09.011
Liger E, Charlet L, Van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939–2955
doi: 10.1016/S0016-7037(99)00265-3
Liu G, Mei H, Zhu H, Fang M, Alharbi NS, Hayat T, Chen C, Tan X (2017) Investigation of U(VI) sorption on silica aerogels: effects of specific surface area, pH and coexistent electrolyte ions. J Mol Liq 246:140–148
doi: 10.1016/j.molliq.2017.09.066
Ouyang J, Pei J, Kuang Q, Xie Z, Zheng L (2014) Supersaturation-controlled shape evolution of α-Fe
doi: 10.1021/am502358g
Qian A, Yuan S, Xie S, Tong M, Zhang P, Zheng Y (2019) Oxidizing capacity of iron electrocoagulation systems for refractory organic contaminant transformation. Environ Sci Technol 53:12629–12638
doi: 10.1021/acs.est.9b03754
Qu J, Yu Y, Cao CY, Song WG (2013) α-Fe
Raming TP, Winnubst AJA, van Kats CM, Philipse AP (2002) The synthesis and magnetic properties of nanosized hematite (α-Fe
doi: 10.1006/jcis.2001.8194
Rustad JR, Wasserman E, Felmy AR (1999) Molecular modeling of the surface charging of hematite: II. Optimal proton distribution and simulation of surface charge versus pH relationships. Surf Sci 424:28–35
doi: 10.1016/S0039-6028(99)00009-6
Sun Z, Chen D, Chen B, Kong L, Su M (2018) Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids Surf A Physicochem Eng Asp 547:141–147
doi: 10.1016/j.colsurfa.2018.02.043
Tan L, Wang X, Tan X, Mei H, Chen C, Hayat T, Alsaedi A, Wen T, Lu S, Wang X (2017) Bonding properties of humic acid with attapulgite and its influence on U(VI) sorption. Chem Geol 464:91–100
doi: 10.1016/j.chemgeo.2017.01.024
Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X (2018) Core–shell hierarchical C@Na
doi: 10.1039/C8EN00149A
Tanwar KS, Petitto SC, Ghose SK, Eng PJ, Trainor TP (2009) Fe(II) adsorption on hematite (0001). Geochim Cosmochim Acta 73:4346–4365
doi: 10.1016/j.gca.2009.04.024
Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman AAA, Geipel G, Bernier-Latmani R (2013) Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat Commun 4:2942
doi: 10.1038/ncomms3942
Waychunas G, Trainor T, Eng P, Catalano J, Brown G, Davis J, Rogers J, Bargar J (2005) Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Anal Bioanal Chem 383:12–27
doi: 10.1007/s00216-005-3393-z
Wu F, Hua J, Zhou J, Liu Y, Long S, Fei Y, Liu C (2021) Facet-specific reactivity of hematite nanocrystals during Fe (II)-catalyzed recrystallization. Chem Geol 583:120460
Yan L, Chan T, Jing C (2020) Arsenic adsorption on hematite facets: spectroscopy and DFT study. Environ Sci Nano 7:3927–3939
doi: 10.1039/D0EN00812E
Yuan Q, Li P, Liu J, Lin Y, Cai Y, Ye Y, Liang C (2017) Facet-dependent selective adsorption of Mn-doped α-Fe
doi: 10.1021/acs.chemmater.7b04114
Zhao W, Wang QQ, Liu F, Qiu GH, Tan WF, Feng XH (2010) Pb
doi: 10.1007/s11368-010-0219-1
Zhao Y, Yan D, Ding C, Su D, Ge Y, Zhao Y, Zhou H, Li J, Jin H (2016) Fe
doi: 10.1016/j.jpowsour.2016.07.097
Zong M, Song D, Zhang X, Huang X, Lu X, Rosso KM (2021) Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light. Environ Sci Technol 55:677–688
doi: 10.1021/acs.est.0c05592