Genetic Monitoring of Grey Wolves in Latvia Shows Adverse Reproductive and Social Consequences of Hunting.
kinship analyses
restricted hunting
social structure
wolves
Journal
Biology
ISSN: 2079-7737
Titre abrégé: Biology (Basel)
Pays: Switzerland
ID NLM: 101587988
Informations de publication
Date de publication:
19 Sep 2023
19 Sep 2023
Historique:
received:
23
08
2023
revised:
17
09
2023
accepted:
17
09
2023
medline:
28
9
2023
pubmed:
28
9
2023
entrez:
28
9
2023
Statut:
epublish
Résumé
Nowadays, genetic research methods play an important role in animal population studies. Since 2009, genetic material from Latvian wolf specimens obtained through hunting has been systematically gathered. This study, spanning until 2021, scrutinizes the consequences of regulated wolf hunting on population genetic metrics, kinship dynamics, and social organization. We employed 16 autosomal microsatellites to investigate relationships between full siblings and parent-offspring pairs. Our analysis encompassed expected and observed heterozygosity, inbreeding coefficients, allelic diversity, genetic distance and differentiation, mean pairwise relatedness, and the number of migrants per generation. The Latvian wolf population demonstrated robust genetic diversity with minimal inbreeding, maintaining stable allelic diversity and high heterozygosity over time and it is not fragmented. Our findings reveal the persistence of conventional wolf pack structures and enduring kinship groups. However, the study also underscores the adverse effects of intensified hunting pressure, leading to breeder loss, pack disruption, territorial displacement, and the premature dispersal of juvenile wolves.
Identifiants
pubmed: 37759654
pii: biology12091255
doi: 10.3390/biology12091255
pmc: PMC10525079
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : European Social Fund
ID : 2014/0002/1DP/1.1.1.2.0/ 13/APIA/VIAA/053
Organisme : European Social Fund
ID : No. 8.2.2.0/20/I/006
Références
PLoS One. 2016 Jun 03;11(6):e0156682
pubmed: 27258193
Bioinformatics. 2012 Oct 1;28(19):2537-9
pubmed: 22820204
J Anim Ecol. 2017 Sep;86(5):1094-1101
pubmed: 28555834
Heredity (Edinb). 2014 Apr;112(4):428-42
pubmed: 24346500
Sci Rep. 2017 May 18;7(1):2097
pubmed: 28522834
Anim Genet. 1994 Apr;25(2):122
pubmed: 8010530
PLoS One. 2013 Sep 19;8(9):e75765
pubmed: 24069446
Sci Rep. 2019 Dec 12;9(1):19003
pubmed: 31831858
PLoS One. 2012;7(10):e46465
pubmed: 23056315
Mol Ecol. 2006 Dec;15(14):4533-53
pubmed: 17107481
Mol Ecol. 2007 Mar;16(5):1099-106
pubmed: 17305863
Anim Genet. 1995 Apr;26(2):132-3
pubmed: 7733507
Biol Rev Camb Philos Soc. 2017 Aug;92(3):1601-1629
pubmed: 27682639
Trends Ecol Evol. 2008 Jun;23(6):327-37
pubmed: 18439706
Hereditas. 1999;130(3):239-44
pubmed: 10509138
Mamm Genome. 1995 Jan;6(1):11-8
pubmed: 7719020
Mol Ecol Resour. 2010 Sep;10(5):797-805
pubmed: 21565091
Evolution. 1989 Mar;43(2):258-275
pubmed: 28568555
Philos Trans R Soc Lond B Biol Sci. 2007 Apr 29;362(1480):539-59
pubmed: 17363359
Mol Ecol. 2008 Jan;17(1):252-74
pubmed: 17877715
Mol Ecol. 2002 May;11(5):857-68
pubmed: 11975702
J Anim Ecol. 2015 Jan;84(1):177-87
pubmed: 25041127
Mol Ecol. 2020 Sep;29(17):3187-3195
pubmed: 32657476
Anim Cogn. 2016 Sep;19(5):939-47
pubmed: 27193460
PLoS One. 2013 Oct 11;8(10):e76454
pubmed: 24146871
PLoS One. 2009 Sep 02;4(9):e6861
pubmed: 19724642
Mol Ecol Resour. 2010 May;10(3):551-5
pubmed: 21565056
Mamm Genome. 1995 Mar;6(3):192-5
pubmed: 7749226
PLoS One. 2010 Sep 29;5(9):
pubmed: 20927363
Mamm Genome. 1996 May;7(5):359-62
pubmed: 8661717