A Novel Fuzzy Relative-Position-Coding Transformer for Breast Cancer Diagnosis Using Ultrasonography.

breast cancer breast ultrasound (BUS) images computer-aided diagnosis (CAD) systems early detection fuzzy relative-position coding transformer

Journal

Healthcare (Basel, Switzerland)
ISSN: 2227-9032
Titre abrégé: Healthcare (Basel)
Pays: Switzerland
ID NLM: 101666525

Informations de publication

Date de publication:
13 Sep 2023
Historique:
received: 06 07 2023
revised: 31 08 2023
accepted: 11 09 2023
medline: 28 9 2023
pubmed: 28 9 2023
entrez: 28 9 2023
Statut: epublish

Résumé

Breast cancer is a leading cause of death in women worldwide, and early detection is crucial for successful treatment. Computer-aided diagnosis (CAD) systems have been developed to assist doctors in identifying breast cancer on ultrasound images. In this paper, we propose a novel fuzzy relative-position-coding (FRPC) Transformer to classify breast ultrasound (BUS) images for breast cancer diagnosis. The proposed FRPC Transformer utilizes the self-attention mechanism of Transformer networks combined with fuzzy relative-position-coding to capture global and local features of the BUS images. The performance of the proposed method is evaluated on one benchmark dataset and compared with those obtained by existing Transformer approaches using various metrics. The experimental outcomes distinctly establish the superiority of the proposed method in achieving elevated levels of accuracy, sensitivity, specificity, and F1 score (all at 90.52%), as well as a heightened area under the receiver operating characteristic (ROC) curve (0.91), surpassing those attained by the original Transformer model (at 89.54%, 89.54%, 89.54%, and 0.89, respectively). Overall, the proposed FRPC Transformer is a promising approach for breast cancer diagnosis. It has potential applications in clinical practice and can contribute to the early detection of breast cancer.

Identifiants

pubmed: 37761727
pii: healthcare11182530
doi: 10.3390/healthcare11182530
pmc: PMC10531413
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : SHIELD Illinois
ID : NA
Organisme : Discovery Partners Institute
ID : NA

Références

Neural Comput Appl. 2022;34(20):18015-18033
pubmed: 35698722
Comput Methods Programs Biomed. 2020 Jul;190:105361
pubmed: 32007839
Comput Med Imaging Graph. 2021 Jan;87:101829
pubmed: 33302247
J Am Coll Radiol. 2019 Sep;16(9 Pt B):1318-1328
pubmed: 31492410
Neural Comput Appl. 2022;34(14):11383-11394
pubmed: 33052172
Insights Imaging. 2018 Aug;9(4):449-461
pubmed: 30094592
Ann Intern Med. 2009 Nov 17;151(10):727-37, W237-42
pubmed: 19920273
Clin Radiol. 2012 Oct;67(10):976-81
pubmed: 22625656
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:480-483
pubmed: 36086171
JAMA. 2014 Jun 25;311(24):2499-507
pubmed: 25058084
Phys Med Biol. 2020 Dec 02;65(24):
pubmed: 33120380
Phys Med Biol. 2019 Dec 05;64(23):235013
pubmed: 31645021
Comput Methods Programs Biomed. 2021 Sep;208:106221
pubmed: 34144251
Radiology. 2017 Apr;283(1):49-58
pubmed: 27918707
Med Eng Phys. 2022 Oct;108:103895
pubmed: 36195364
Radiology. 2004 Dec;233(3):830-49
pubmed: 15486214
Biology (Basel). 2022 Mar 14;11(3):
pubmed: 35336813
Radiology. 2002 Oct;225(1):165-75
pubmed: 12355001
Am J Med. 2013 Jun;126(6):472-9
pubmed: 23561631
Br J Cancer. 2022 Mar;126(4):533-550
pubmed: 34703006
Sensors (Basel). 2022 Jan 21;22(3):
pubmed: 35161552

Auteurs

Yanhui Guo (Y)

Department of Computer Science, University of Illinois, Springfield, IL 62703, USA.

Ruquan Jiang (R)

Department of Pediatrics, Xinxiang Medical University, Xinxiang 453003, China.

Xin Gu (X)

School of Information Science and Technology, North China University of Technology, Beijing 100144, China.

Heng-Da Cheng (HD)

Department of Computer Science, Utah State University, Logan, UT 84322, USA.

Harish Garg (H)

School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147004, Punjab, India.

Classifications MeSH