A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer-Tropsch Synthesis over Transition Metals.
DFT
Fischer-Tropsch synthesis
carbon monoxide
cobalt
transition metals
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
08 Sep 2023
08 Sep 2023
Historique:
received:
14
06
2023
revised:
20
08
2023
accepted:
30
08
2023
medline:
28
9
2023
pubmed:
28
9
2023
entrez:
28
9
2023
Statut:
epublish
Résumé
The increasing demand for clean fuels and sustainable products has attracted much interest in the development of active and selective catalysts for CO conversion to desirable products. This review maps the theoretical progress of the different facets of most commercial catalysts, including Co, Fe, Ni, Rh, and Ru. All relevant elementary steps involving CO dissociation and hydrogenation and their dependence on surface structure, surface coverage, temperature, and pressure are considered. The dominant Fischer-Tropsch synthesis mechanism is also explored, including the sensitivity to the structure of H-assisted CO dissociation and direct CO dissociation. Low-coordinated step sites are shown to enhance catalytic activity and suppress methane formation. The hydrogen adsorption and CO dissociation mechanisms are highly dependent on the surface coverage, in which hydrogen adsorption increases, and the CO insertion mechanism becomes more favorable at high coverages. It is revealed that the chain-growth probability and product selectivity are affected by the type of catalyst and its structure as well as the applied temperature and pressure.
Identifiants
pubmed: 37764301
pii: molecules28186525
doi: 10.3390/molecules28186525
pmc: PMC10650776
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Références
J Am Chem Soc. 2013 Nov 6;135(44):16284-7
pubmed: 24147726
J Am Chem Soc. 2013 Apr 24;135(16):6107-21
pubmed: 23480097
J Am Chem Soc. 2016 Oct 12;138(40):13246-13252
pubmed: 27599672
Phys Chem Chem Phys. 2016 Oct 5;18(39):27272-27283
pubmed: 27711700
Phys Chem Chem Phys. 2012 May 21;14(19):7028-31
pubmed: 22482113
Phys Chem Chem Phys. 2013 Mar 21;15(11):4059-65
pubmed: 23403641
J Am Chem Soc. 2013 May 15;135(19):7114-7
pubmed: 23634891
Chemphyschem. 2012 Jan 16;13(1):89-91
pubmed: 22147562
J Phys Chem B. 2006 Aug 10;110(31):15368-80
pubmed: 16884257
J Phys Chem A. 2010 Oct 7;114(39):10508-14
pubmed: 20831151
Chemphyschem. 2011 Nov 18;12(16):2925-8
pubmed: 21956851
J Am Chem Soc. 2016 Mar 30;138(12):4146-54
pubmed: 26954458
J Chem Phys. 2005 Jan 8;122(2):024711
pubmed: 15638618
Chem Rev. 2023 May 10;123(9):5798-5858
pubmed: 36897768
J Am Chem Soc. 2017 Dec 6;139(48):17582-17589
pubmed: 29119795
Phys Chem Chem Phys. 2010 Jun 28;12(24):6330-2
pubmed: 20532417
Nanoscale. 2021 Apr 14;13(14):6902-6915
pubmed: 33885491
J Am Chem Soc. 2017 May 24;139(20):6928-6945
pubmed: 28413882
Faraday Discuss. 2017 Apr 28;197:117-151
pubmed: 28186212
Phys Chem Chem Phys. 2010 Jun 28;12(24):6307-8
pubmed: 20505880