Cropland Mapping Using Sentinel-1 Data in the Southern Part of the Russian Far East.

DpRVI SAR data crop identification machine learning remote sensing time series classification

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
15 Sep 2023
Historique:
received: 20 08 2023
revised: 13 09 2023
accepted: 13 09 2023
medline: 28 9 2023
pubmed: 28 9 2023
entrez: 28 9 2023
Statut: epublish

Résumé

Crop identification is one of the most important tasks in digital farming. The use of remote sensing data makes it possible to clarify the boundaries of fields and identify fallow land. This study considered the possibility of using the seasonal variation in the Dual-polarization Radar Vegetation Index (DpRVI), which was calculated based on data acquired by the Sentinel-1B satellite between May and October 2021, as the main characteristic. Radar images of the Khabarovskiy District of the Khabarovsk Territory, as well as those of the Arkharinskiy, Ivanovskiy, and Oktyabrskiy districts in the Amur Region (Russian Far East), were obtained and processed. The identifiable classes were soybean and oat crops, as well as fallow land. Classification was carried out using the Support Vector Machines, Quadratic Discriminant Analysis (QDA), and Random Forest (RF) algorithms. The training (848 ha) and test (364 ha) samples were located in Khabarovskiy District. The best overall accuracy on the test set (82.0%) was achieved using RF. Classification accuracy at the field level was 79%. When using the QDA classifier on cropland in the Amur Region (2324 ha), the overall classification accuracy was 83.1% (F1 was 0.86 for soybean, 0.84 for fallow, and 0.79 for oat). Application of the Radar Vegetation Index (RVI) and VV/VH ratio enabled an overall classification accuracy in the Amur region of 74.9% and 74.6%, respectively. Thus, using DpRVI allowed us to achieve greater performance compared to other SAR data, and it can be used to identify crops in the south of the Far East and serve as the basis for the automatic classification of cropland.

Identifiants

pubmed: 37765958
pii: s23187902
doi: 10.3390/s23187902
pmc: PMC10536219
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Sci Total Environ. 2019 Feb 15;651(Pt 2):2087-2096
pubmed: 30321730
Sensors (Basel). 2022 Jul 29;22(15):
pubmed: 35957240

Auteurs

Konstantin Dubrovin (K)

Computing Center Far Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia.

Alexey Stepanov (A)

Far Eastern Agriculture Research Institute, Vostochnoe, 680521 Khabarovsk, Russia.

Andrey Verkhoturov (A)

Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia.

Classifications MeSH