True grit? Comparative anatomy and evolution of gizzards in fishes.
Actinopterygii
detritivory
gastrolith
microphagy
trituration
Journal
Journal of anatomy
ISSN: 1469-7580
Titre abrégé: J Anat
Pays: England
ID NLM: 0137162
Informations de publication
Date de publication:
28 Sep 2023
28 Sep 2023
Historique:
revised:
30
08
2023
received:
12
07
2023
accepted:
12
09
2023
medline:
29
9
2023
pubmed:
29
9
2023
entrez:
28
9
2023
Statut:
aheadofprint
Résumé
Gut morphology frequently reflects the food organisms digest. Gizzards are organs of the gut found in archosaurs and fishes that mechanically reduce food to aid digestion. Gizzards are thought to compensate for edentulism and/or provide an advantage when consuming small, tough food items (e.g., phytoplankton and algae). It is unknown how widespread gizzards are in fishes and how similar these structures are among different lineages. Here, we investigate the distribution of gizzards across bony fishes to (1) survey different fishes for gizzard presence, (2) compare the histological structure of gizzards in three species, (3) estimate how often gizzards have evolved in fishes, and (4) explore whether anatomical and ecological traits like edentulism and microphagy predict gizzard presence. According to our analyses, gizzards are rare across bony fishes, evolving only six times in a broad taxonomic sampling of 51 species, and gizzard presence is not clearly correlated with factors like gut length or dentition. We find that gizzard morphology varies among the lineages where one is present, both macroscopically (presence of a crop) and microscopically (varying tissue types). We conclude that gizzards likely aid in the mechanical reduction of food in fishes that have lost an oral dentition in their evolutionary past; however, the relative scarcity of gizzards suggests they are just one of many possible solutions for processing tough, nutrient-poor food items. Gizzards have long been present in the evolutionary history of fishes, can be found in a wide variety of marine and freshwater clades, and likely have been overlooked in many taxa.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 Anatomical Society.
Références
Brezner, J. (1958) Food habits of the northern river carpsucker in Missouri. The Progressive Fish-Culturist, 20(4), 170-174.
Brinkman, D.B. (1990) Paleooecology of the Judith River formation (Campanian) of dinosaur Provincial Park, Alberta, Canada: evidence from vertebrate microfossil localities. Palaeogeography, Palaeoclimatology, Palaeoecology, 78(1-2), 37-54.
Burns, M.D. (2021) Adaptation to herbivory and detritivory drives the convergent evolution of large abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes). Evolution, 75(3), 688-705.
Carr, A., Tibbetts, I.R., Kemp, A., Truss, R. & Drennan, J. (2006) Inferring parrotfish (Teleostei: Scaridae) pharyngeal mill function from dental morphology, wear, and microstructure. Journal of Morphology, 267, 1147-1156. Available from: https://doi.org/10.1002/jmor.10457
Carr, E.M., Summers, A.P. & Cohen, K.E. (2021) The moment of tooth: rate, fate and pattern of Pacific lingcod dentition revealed by pulse-chase. Proceedings of the Royal Society B, 288, 20211436. Available from: https://doi.org/10.1098/rspb.2021.1436
Castro, N.M., Sasso, W.S. & Katchburian, E. (1961) A histological and histochemical study of the gizzard of the Mugil sp. Pisces (Tainha). Acta Anatomica, 45(1-2), 155-163.
Chakrabarti, P. & Ghosh, S.K. (2014) A comparative study of the histology and microanatomy of the stomach in Mystus vittatus (Bloch), Liza parsia (Hamilton) and Oreochromis mossambicus (Peters). Journal of Microscopy and Ultrastructure, 2(4), 245-250.
Chang, J., Rabosky, D.L., Smith, S.A. & Alfaro, M.E. (2019) An R package and online resource for macroevolutionary studies using the ray-finned fish tree of life. Methods in Ecology and Evolution, 10(7), 1118-1124.
Choat, J.H., Clements, K.D. & Robbins, A.W. (2002) The trophic status of herbivorous fishes on coral reefs: 1: dietary analyses. Marine Biology, 140, 613-623.
Cohen, K.E., Ackles, A.L. & Hernandez, L.P. (2022) The role of heterotopy and heterochrony during morphological diversification of otocephalan epibranchial organs. Evolution & Development, 24(3-4), 79-91.
Cohen, K.E., Hernandez, L.P., Crawford, C.H. & Flammang, B.E. (2018) Channeling vorticity: modeling the filter-feeding mechanism in silver carp using μCT and 3D PIV. Journal of Experimental Biology, 221(19), jeb183350.
Cohen, K.E. & Summers, A.P. (2023) Diphyodont dilemma-are teeth too costly or jaws too weak? Integrative and Comparative Biology, 62, S61.
Dilger, W.C. (1957) The loss of teeth in birds. The Auk, 74(1), 103-104.
Eastman, J.T. (1977) The Pharyngeal Bones and Teeth of Catostomid Fishes. The American Midland Naturalist, 97(1), 68-88. Available from: https://doi.org/10.2307/2424686
Egan, J.P., Bloom, D.D., Kuo, C.H., Hammer, M.P., Tongnunui, P., Iglésias, S.P. et al. (2018) Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies). Molecular Phylogenetics and Evolution, 124, 151-161.
Egan, J.P., Chew, U.S., Kuo, C.H., Villarroel-Diaz, V., Hundt, P.J., Iwinski, N.G. et al. (2017) Diets and trophic guilds of small fishes from coastal marine habitats in western Taiwan. Journal of Fish Biology, 91(1), 331-345.
Fritz, J., Hummel, J., Kienzle, E., Wings, O., Streich, W.J. & Clauss, M. (2011) Gizzard vs. teeth, it's a tie: food-processing efficiency in herbivorous birds and mammals and implications for dinosaur feeding strategies. Paleobiology, 37(4), 577-586. Available from: https://doi.org/10.1666/10031.1
Fugi, R., Agostinho, A.A. & Hahn, N.S. (2001) Trophic morphology of five benthic-feeding fish species of a tropical floodplain. Revista Brasileira de Biologia, 61, 27-33.
German, D.P. & Horn, M.H. (2006) Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Marine Biology, 148, 1123-1134.
Gidmark, N.J., Taylor, C., LoPresti, E. & Brainerd, E. (2015) Functional morphology of durophagy in black carp, Mylopharyngodon piceus. Journal of Morphology, 276(12), 1422-1432.
Goodman, B.E. (2010) Insights into digestion and absorption of major nutrients in humans. Advances in Physiology Education, 34(2), 44-53.
Grande, R.L. (1985) Recent and fossil clupeomorph fishes with materials for revision of the subgroups of clupeoids. Bulletin of the American Museum of Natural History, 181, 231-372.
Hernandez, L.P. & Cohen, K.E. (2019) The role of developmental integration and historical contingency in the origin and evolution of cypriniform trophic novelties. Integrative and Comparative Biology, 59(2), 473-488.
Holley, L.L., Heidman, M.K., Chambers, R.M. & Sanderson, S.L. (2015) Mucous contribution to gut nutrient content in American gizzard shad Dorosoma cepedianum. Journal of Fish Biology, 86(5), 1457-1470.
Holmberg, A., Kaim, J., Persson, A., Jensen, J., Wang, T. & Holmgren, S. (2002) Effects of digestive status on the reptilian gut. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 499-518.
Horn, M.H., Correa, S.B., Parolin, P., Pollux, B.J.A., Anderson, J.T., Lucas, C. et al. (2011) Seed dispersal by fishes in tropical and temperate fresh waters: the growing evidence. Acta Oecologica, 37(6), 561-577.
Huelsenbeck, J.P., Nielsen, R. & Bollback, J.P. (2003) Stochastic mapping of morphological characters. Systematic Biology, 52(2), 131-158.
Jonasson, G., Skoglund, I. & Rythén, M. (2018) The rise and fall of the alveolar process: dependency of teeth and metabolic aspects. Archives of Oral Biology, 96, 195-200.
Jones, R.S. (1968) Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes). Micronesica, 4(2), 309-361.
Jørgensen, C.B. (1966) Biology of suspension feeding. Oxford: Pergamon Press. Introduction. In: Steele, J.H. (Ed.) Marine food chains. Berkeley: University of California Press, pp. 193-195.
Kapoor, B.G., Smit, H.J. & Verighina, I.A. (1976) The alimentary canal and digestion in teleosts. Advances in Marine Biology, 13, 109-239.
Kolmann, M.A., Welch, K.C., Jr., Summers, A.P. & Lovejoy, N.R. (2016) Always chew your food: freshwater stingrays use mastication to process tough insect prey. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20161392.
Konow, N. & Bellwood, D.R. (2011) Evolution of high trophic diversity based on limited functional disparity in the feeding apparatus of marine angelfishes (f. Pomacanthidae). PLoS ONE, 6(9), e24113.
Leigh, S.R., Setchell, J.M., Charpentier, M., Knapp, L.A. & Wickings, E.J. (2008) Canine tooth size and fitness in male mandrills (Mandrillus sphinx). Journal of Human Evolution, 55(1), 75-85.
Louchart, A. & Viriot, L. (2011) From snout to beak: the loss of teeth in birds. Trends in Ecology & Evolution, 26(12), Article 12. Available from: https://doi.org/10.1016/j.tree.2011.09.004
Lucas, P.W. (2004) Dental functional morphology: how teeth work. Cambridge: The University of Hong Kong, Cambridge University Press. ISBN: 9780511735011.
Lucas, P.W. & Luke, D.A. (1984) Chewing it over: basic principles of food breakdown. In: Chivers, D.J., Wood, B.A. & Bilsborough, A. (Eds.) Food acquisition and processing in primates. Boston, MA: Springer. Available from: https://doi.org/10.1007/978-1-4757-5244-1_12
Mayne, R.G. (1854) An expository lexicon of the terms, ancient and modern, in medical and general science. London: J. Churchhill, p. 1504.
Menezes, M.S. & Caramaschi, E.P. (2007) Distribution and population structure of the fish Cyphocharax gilbert (Characiformes: Curimatidae) in the Lower Paraíba do Sul River, Brazil. Revista de Biología Tropical, 55(3-4), 1015-1023.
Mongle, C.S., Koenig, A., Samonds, K.E., Smaers, J.B. & Borries, C. (2020) Costly teeth? Gestation length in primates suggests that neonate dentition is not expensive to produce. The Anatomical Record, 303(9), 2476-2484.
Moore, S.J. (1998a) The comparative functional gizzard morphology of several species of birds. Australian Journal of Zoology, 46(4), 359-368. Available from: https://doi.org/10.1071/ZO94037
Moore, S.J. (1998b) Use of an artificial gizzard to investigate the effect of grit on the breakdown of grass. Journal of Zoology, 246, 119-124. Available from: https://doi.org/10.1111/j.1469-7998.1998.tb00140.x
Moore, S.J., Lill, C.A. & Sanson, G.D. (1998) Functional morphology of the gizzard of the domestic goose: design of an artificial gizzard. Journal of Zoology, 246(1), 111-117.
Mundahl, N.D. & Wissing, T.E. (1988) Selection and digestive efficiencies of gizzard shad feeding on natural detritus and two laboratory diets. Transactions of the American Fisheries Society, 117(5), 480-487.
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290.
Pos (Larkin), K.M., Kolmann, M.A., Donatelli, C., Cohen, K.E., Egan, J. & Hernandez, L.P. (2021) The Gizzard of Oz: mucus and motors and grit, oh my!: a comparative look at gizzards in fishes. Integrative and Comparative Biology, 61, E712-E713.
Pos, K.M., Farina, S.C., Kolmann, M.A. & Gidmark, N.J. (2019) Pharyngeal jaws converge by similar means, not to similar ends, when minnows (Cypriniformes: Leuciscidae) adapt to new dietary niches. Integrative and Comparative Biology, 59(2), 432-442.
Prinz, J.F. & Lucas, P.W. (1997) An optimization model for mastication and swallowing in mammals. Proceedings of the Royal Society B: Biological Sciences, 264(1389), 1715-1721. Available from: https://doi.org/10.1098/rspb.1997.0238
Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M. et al. (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392-395. Available from: https://doi.org/10.1038/s41586-018-0273-1
Raia, P., Carotenuto, F., Meloro, C., Piras, P. & Pushkina, D. (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution, 64(5), 1489-1503. Available from: https://doi.org/10.1111/j.1558-5646.2009.00921.x
Reilly, S.M., McBrayer, L.D. & White, T.D. (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128, 397-415.
Revell, L.J. (2009) Size-correction and principal components for interspecific comparative studies. Evolution, 63(12), 3258-3268.
Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223.
Rowntree, W.S. (1903) On some points in the visceral anatomy of the Characinidae with an enquiry into the relations of the ductus pneumaticus in the physostomi generally. Transactions of the Linnean Society of London. 2nd series: Zoology, 9(2), 47-81.
Sanders, K.M., Koh, S.D., Ro, S. & Ward, S.M. (2012) Regulation of gastrointestinal motility-insights from smooth muscle biology. Nature Reviews Gastroenterology & Hepatology, 9(11), 633-645.
Sanderson, S.L. & Wassersug, R. (1993) Convergent and alternative designs for vertebrate suspension feeding. In: Hanken, J. & Hall, B.K. (Eds.) The skull, volume 3: functional and evolutionary mechanisms. Chicago, IL: University of Chicago Press, pp. 37-112.
Schmitz, E.H. & Baker, C.D. (1969) Digestive anatomy of the gizzard shad, Dorosoma cepedianum and the threadfin shad, D. Petenense. Transactions of the American Microscopical Society, 88, 525-546.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. Available from: https://doi.org/10.1038/nmeth.2089
Schwenk, K. & Rubega, M. (2005) Diversity of vertebrate feeding systems. In: Starck, J.M. & Wang, T. (Eds.) Physiological and ecological adaptations to feeding in vertebrates. Enfield, NH: Science Publishers, pp. 1-41.
Secor, S.M. & Nagy, K.A. (1994) Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology, 75(6), 1600-1614.
Shen, Y., Yang, N., Liu, Z., Chen, Q. & Li, Y. (2020) Phylogenetic perspective on the relationships and evolutionary history of the Acipenseriformes. Genomics, 112(5), 3511-3517.
Smith, T.D., Muchlinski, M.N., Bucher, W.R., Vinyard, C.J., Bonar, C.J., Evans, S., Williams, L.E. & DeLeon, V.B. (2017) Relative tooth size at birth in primates: Life history correlates. American Journal of Physical Anthropology, 164(3), 623-634. Available from: https://doi.org/10.1002/ajpa.23302
Smith, C.R. & Richmond, M.E. (1972) Factors influencing pellet egestion and gastric pH in the barn owl. The Wilson Bulletin, 84(2), 179-186.
Spiegel, J.R., Quist, M.C. & Morris, J.E. (2011) Trophic ecology and gill raker morphology of seven catostomid species in Iowa rivers. Journal of Applied Ichthyology, 27(5), 1159-1164.
Stiassny, M.L. & Jensen, J.S. (1987) Labroid intrarelationships revisited: Morphological complexity, key innovations, and the study of comparative diversity. Bulletin of the Museum of Comparative Zoology, 151(5), 269-319.
Svihus, B. (2011) The gizzard: function, influence of diet structure and effects on nutrient availability. World's Poultry Science Journal, 67(2), 207-224. Available from: https://doi.org/10.1017/S0043933911000249
Takasaki, R. & Kobayashi, Y. (2020) Stomach histology of Crocodylus siamensis and Gavialis gangeticus reveals analogy of archosaur “gizzards”, with implication on crocodylian gastroliths function. Acta Herpetologica, 15(2), 111-118. Available from: https://doi.org/10.13128/a_h-7564
Thomson, J.M. (1954) The organs of feeding and the food of some Australian Mullet. Marine and Freshwater Research, 5(3), 469-485.
Van der Schoor, S.R., Reeds, P.J., Stoll, B., Henry, J.F., Rosenberger, J.R., Burrin, D.G. et al. (2002) The high metabolic cost of a functional gut. Gastroenterology, 123(6), 1931-1940.
van Gils, J.A., Piersma, T., Dekinga, A. & Dietz, M.W. (2003) Cost-benefit analysis of mollusc-eating in a shorebird II. Optimizing gizzard size in the face of seasonal demands. Journal of Experimental Biology, 206(19), 3369-3380.
Varricchio, D.J. (2001) Gut contents from a cretaceous tyrannosaurid: implications for theropod dinosaur digestive tracts. Journal of Paleontology, 75, 401-406.
Veiberg, V., Mysterud, A., Gaillard, J.M., Delorme, D., Van Laere, G. & Klein, F. (2007) Bigger teeth for longer life? Longevity and molar height in two roe deer populations. Biology Letters, 3, 268-270. Available from: https://doi.org/10.1098/rsbl.2006.0610
Wainwright, P.C., Smith, W.L., Price, S.A., Tang, K.L., Sparks, J.S., Ferry, L.A. et al. (2012) The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Systematic Biology, 61(6), 1001-1027.
Weisel, G.F. (1973) Anatomy and histology of the digestive system of the paddlefish (Polyodon spathula). Journal of Morphology, 140(2), 243-255.
Western, D. & Ssemakula, J. (1982) Life history patterns in birds and mammals and their evolutionary interpretation. Oecologia, 54, 281-290. Available from: https://doi.org/10.1007/BF00379994
Whitehead, P.J.P. (1985) Clupeoid fishes of the World (Suborder Clupeoidei): an annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf herrings. Part 1. Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis, 125, 1-303.
Whitehead, P.J.P., Nelson, G.J. & Wongratana, T. (1988) Clupeoid fishes of the World (Suborder Clupeoidei): an annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf herrings. Part 2. Engraulididae. FAO Fisheries Synopsis, 125, 305-579.
Wings, O. (2007) A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52(1), 1-16.
Wings, O. & Sander, P.M. (2007) No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proceedings of the Royal Society of London B, 274, 635-640.
Zheng, X., Marting, L.D. & Zhou, Z. (2011) Fossil evidence of avian crops from the early cretaceous of China. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 15904-15907. Available from: https://doi.org/10.1073/pnas.1112694108