A virus-like particle-based bivalent PCSK9 vaccine lowers LDL-cholesterol levels in non-human primates.


Journal

NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863

Informations de publication

Date de publication:
28 Sep 2023
Historique:
received: 15 05 2023
accepted: 15 09 2023
medline: 29 9 2023
pubmed: 29 9 2023
entrez: 28 9 2023
Statut: epublish

Résumé

Elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor in the development of atherosclerotic cardiovascular disease (ASCVD). Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL-C metabolism, have emerged as promising approaches for reducing elevated LDL-C levels. Here, we evaluated the cholesterol-lowering efficacy of virus-like particle (VLP) based vaccines that target epitopes found within the LDL receptor (LDL-R) binding domain of PCSK9. In both mice and non-human primates, a bivalent VLP vaccine targeting two distinct epitopes on PCSK9 elicited strong and durable antibody responses and lowered cholesterol levels. In macaques, a VLP vaccine targeting a single PCSK9 epitope was only effective at lowering LDL-C levels in combination with statins, whereas immunization with the bivalent vaccine lowered LDL-C without requiring statin co-administration. These data highlight the efficacy of an alternative, vaccine-based approach for lowering LDL-C.

Identifiants

pubmed: 37770440
doi: 10.1038/s41541-023-00743-6
pii: 10.1038/s41541-023-00743-6
pmc: PMC10539315
doi:

Types de publication

Journal Article

Langues

eng

Pagination

142

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL131696
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001449
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2023. Springer Nature Limited.

Références

Tsao, C. W. et al. Heart Disease and Stroke Statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).
pubmed: 35078371 doi: 10.1161/CIR.0000000000001052
2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 290, 140–205 (2019).
Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
pubmed: 32052833 pmcid: 7308544 doi: 10.1093/eurheartj/ehz962
Cholesterol Treatment Trialists, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).
doi: 10.1016/S0140-6736(10)61350-5
Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1046–e1081 (2019).
pubmed: 30565953
Ray, K. K., Corral, P., Morales, E. & Nicholls, S. J. Pharmacological lipid-modification therapies for prevention of ischaemic heart disease: current and future options. Lancet 394, 697–708 (2019).
pubmed: 31448741 doi: 10.1016/S0140-6736(19)31950-6
Ridker, P. M., Mora, S., Rose, L. & Group, J. T. S. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur. Heart J. 37, 1373–1379 (2016).
pubmed: 26916794 pmcid: 4852064 doi: 10.1093/eurheartj/ehw046
Trompet, S. et al. Non-response to (statin) therapy: the importance of distinguishing non-responders from non-adherers in pharmacogenetic studies. Eur. J. Clin. Pharmacol. 72, 431–437 (2016).
pubmed: 26686871 doi: 10.1007/s00228-015-1994-9
Tiwari, A., Bansal, V., Chugh, A. & Mookhtiar, K. Statins and myotoxicity: a therapeutic limitation. Expert Opin. Drug Saf. 5, 651–666 (2006).
pubmed: 16907655 doi: 10.1517/14740338.5.5.651
Sun, L., Wolska, A., Amar, M., Zubiran, R. & Remaley, A. T. Approach to the patient with a suboptimal statin response: causes and algorithm for clinical management. J. Clin. Endocrinol. Metab. 108, 2424–2434 (2023).
Marais, A. D., Kim, J. B., Wasserman, S. M. & Lambert, G. PCSK9 inhibition in LDL cholesterol reduction: genetics and therapeutic implications of very low plasma lipoprotein levels. Pharmacol. Ther. 145, 58–66 (2015).
pubmed: 25046268 doi: 10.1016/j.pharmthera.2014.07.004
Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).
pubmed: 12730697 doi: 10.1038/ng1161
Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).
pubmed: 16554528 doi: 10.1056/NEJMoa054013
Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).
pubmed: 16909389 pmcid: 1559532 doi: 10.1086/507488
Brandts, J. & Ray, K. K. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat. Rev. Cardiol. 20, 600–616 (2023).
Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).
pubmed: 25773378 doi: 10.1056/NEJMoa1501031
Sabatine, M. S. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500–1509 (2015).
pubmed: 25773607 doi: 10.1056/NEJMoa1500858
Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).
pubmed: 30403574 doi: 10.1056/NEJMoa1801174
Ray, K. K. et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins: prespecified secondary end points in ORION 1. Circulation 138, 1304–1316 (2018).
pubmed: 29735484 doi: 10.1161/CIRCULATIONAHA.118.034710
Newman, C. B. & Tobert, J. A. Targeting PCSK9 with antibodies and gene silencing to reduce LDL cholesterol. J. Clin. Endocrinol. Metab. 108, 784–790 (2023).
pubmed: 36469793 doi: 10.1210/clinem/dgac708
Desai, N. R. et al. Cost effectiveness of inclisiran in atherosclerotic cardiovascular patients with elevated low-density lipoprotein cholesterol despite statin use: a threshold analysis. Am. J. Cardiovasc. Drugs 22, 545–556 (2022).
pubmed: 35595929 pmcid: 9468070 doi: 10.1007/s40256-022-00534-9
Hlatky, M. A. A pound of prevention? Assessing the value of new cholesterol-lowering drugs. Ann. Intern. Med. 170, 264–265 (2019).
pubmed: 30597487 doi: 10.7326/M18-3632
Korman, M. J., Retterstol, K., Kristiansen, I. S. & Wisloff, T. Are PCSK9 inhibitors cost effective? Pharmacoeconomics 36, 1031–1041 (2018).
pubmed: 29777433 doi: 10.1007/s40273-018-0671-0
Landmesser, U. et al. New prospects for PCSK9 inhibition? Eur. Heart J. 39, 2600–2601 (2018).
pubmed: 29579192 doi: 10.1093/eurheartj/ehy147
Bachmann, M. F. & Dyer, M. R. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat. Rev. Drug Discov. 3, 81–88 (2004).
pubmed: 14666113 doi: 10.1038/nrd1284
Chackerian, B. & Frietze, K. M. Moving towards a new class of vaccines for non-infectious chronic diseases. Expert Rev. Vaccines 15, 561–563 (2016).
pubmed: 26919571 doi: 10.1586/14760584.2016.1159136
Jennings, G. T. & Bachmann, M. F. Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. Annu. Rev. Pharmacol. Toxicol. 49, 303–326 (2009).
pubmed: 18851703 doi: 10.1146/annurev-pharmtox-061008-103129
Ambühl, P. M. et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J. Hypertens. 25, 63–72 (2007).
pubmed: 17143175 doi: 10.1097/HJH.0b013e32800ff5d6
Farlow, M. R. et al. Long-term treatment with active Abeta immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res. Ther. 7, 23 (2015).
pubmed: 25918556 pmcid: 4410460 doi: 10.1186/s13195-015-0108-3
Crossey, E. et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 33, 5747–5755 (2015).
pubmed: 26413878 pmcid: 4609631 doi: 10.1016/j.vaccine.2015.09.044
Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).
pubmed: 8349823 pmcid: 294927 doi: 10.1172/JCI116663
Goksoyr, L. et al. A cVLP-based vaccine displaying full-length PCSK9 elicits a higher reduction in plasma PCSK9 than similar peptide-based cVLP vaccines. Vaccines (Basel) 11, 2 (2022).
Pan, Y. et al. A therapeutic peptide vaccine against PCSK9. Sci. Rep. 7, 12534 (2017).
pubmed: 28970592 pmcid: 5624949 doi: 10.1038/s41598-017-13069-w
Zhang, L. et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int. J. Biol. Sci. 8, 310–327 (2012).
pubmed: 22355267 pmcid: 3282994 doi: 10.7150/ijbs.3524
Amanna, I. J. & Slifka, M. K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 236, 125–138 (2010).
pubmed: 20636813 pmcid: 7165522 doi: 10.1111/j.1600-065X.2010.00912.x
Chan, J. C. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009).
pubmed: 19443683 pmcid: 2682542 doi: 10.1073/pnas.0903849106
Shamekh, R. et al. Endogenous and diet-induced hypercholesterolemia in nonhuman primates: effects of age, adiposity, and diabetes on lipoprotein profiles. Metabolism 60, 1165–1177 (2011).
pubmed: 21376354 doi: 10.1016/j.metabol.2010.12.012
Awan, Z. et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem. 58, 183–189 (2012).
pubmed: 22065156 doi: 10.1373/clinchem.2011.172932
Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).
pubmed: 15358785 doi: 10.1074/jbc.M409699200
Careskey, H. E. et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J. Lipid Res. 49, 394–398 (2008).
pubmed: 18033751 doi: 10.1194/jlr.M700437-JLR200
Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).
pubmed: 17542753 doi: 10.1586/14760584.6.3.381
Galabova, G. et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS ONE 9, e114469 (2014).
pubmed: 25474576 pmcid: 4256444 doi: 10.1371/journal.pone.0114469
Momtazi-Borojeni, A. A., Jaafari, M. R., Badiee, A., Banach, M. & Sahebkar, A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 17, 223 (2019).
pubmed: 31818299 pmcid: 6902459 doi: 10.1186/s12916-019-1457-8
Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53, 51–65 (2012).
pubmed: 22021650 pmcid: 3243481 doi: 10.1194/jlr.M019927
Chackerian, B., Briglio, L., Albert, P. S., Lowy, D. R. & Schiller, J. T. Induction of autoantibodies to CCR5 in macaques and subsequent effects upon challenge with an R5-tropic simian/human immunodeficiency virus. J. Virol. 78, 4037–4047 (2004).
pubmed: 15047820 pmcid: 374281 doi: 10.1128/JVI.78.8.4037-4047.2004
Chackerian, B., Lowy, D. R. & Schiller, J. T. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Invest. 108, 415–423 (2001).
pubmed: 11489935 pmcid: 209354 doi: 10.1172/JCI11849
Baum, S. J. et al. PCSK9 inhibitor access barriers-issues and recommendations: Improving the access process for patients, clinicians and payers. Clin. Cardiol. 40, 243–254 (2017).
pubmed: 28328015 pmcid: 5412679 doi: 10.1002/clc.22713
Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, eabe9117 (2021).
Turner, T. & Stein, E. A. Non-statin treatments for managing LDL cholesterol and their outcomes. Clin. Ther. 37, 2751–2769 (2015).
pubmed: 26548322 doi: 10.1016/j.clinthera.2015.09.004
Alleyne, C. et al. Series of novel and highly potent cyclic peptide PCSK9 inhibitors derived from an mRNA display screen and optimized via structure-based design. J. Med. Chem. 63, 13796–13824 (2020).
pubmed: 33170686 doi: 10.1021/acs.jmedchem.0c01084
Ballantyne, C. M. et al. Phase 2b Randomized Trial of the Oral PCSK9 Inhibitor MK-0616. J. Am. Coll. Cardiol. 81, 1553–1564 (2023).
pubmed: 36889610 doi: 10.1016/j.jacc.2023.02.018
Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).
pubmed: 34012082 doi: 10.1038/s41586-021-03534-y
Kawakami, R. et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS ONE 13, e0191895 (2018).
pubmed: 29438441 pmcid: 5811007 doi: 10.1371/journal.pone.0191895
Momtazi-Borojeni, A. A. et al. Pre-Clinical Evaluation of the Nanoliposomal antiPCSK9 Vaccine in Healthy Non-Human Primates. Vaccines (Basel) 9, 749 (2021).
Ortega-Rivera, O. A., Pokorski, J. K. & Steinmetz, N. F. A single-dose, implant-based, trivalent virus-like particle vaccine against “cholesterol checkpoint” proteins. Adv. Ther. (Weinh) 4, 2100014 (2021).
Wu, D. et al. PCSK9Qbeta-003 vaccine attenuates atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Drugs Ther. 35, 141–151 (2021).
pubmed: 32725442 doi: 10.1007/s10557-020-07041-6
Zeitlinger, M. et al. A phase I study assessing the safety, tolerability, immunogenicity, and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9. Eur. J. Clin. Pharmacol. 77, 1473–1484 (2021).
pubmed: 33969434 pmcid: 8440313 doi: 10.1007/s00228-021-03149-2
Chackerian, B. & Peabody, D. S. Factors that govern the induction of long-lived antibody responses. Viruses 12, 74 (2020).
Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S1–S45 (2014).
pubmed: 24222016 doi: 10.1161/01.cir.0000437738.63853.7a
Jelinkova, L. et al. An epitope-based malaria vaccine targeting the junctional region of circumsporozoite protein. NPJ Vaccines 6, 13 (2021).
pubmed: 33479242 pmcid: 7820318 doi: 10.1038/s41541-020-00274-4

Auteurs

Alexandra Fowler (A)

Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.

Koen K A Van Rompay (KKA)

California National Primate Research Center, University of California, Davis, CA, USA.

Maureen Sampson (M)

Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Javier Leo (J)

Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.

Jennifer K Watanabe (JK)

California National Primate Research Center, University of California, Davis, CA, USA.

Jodie L Usachenko (JL)

California National Primate Research Center, University of California, Davis, CA, USA.

Ramya Immareddy (R)

California National Primate Research Center, University of California, Davis, CA, USA.

Debbie M Lovato (DM)

Clinical and Translational Research Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

John T Schiller (JT)

Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Alan T Remaley (AT)

Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Bryce Chackerian (B)

Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA. bchackerian@salud.unm.edu.

Classifications MeSH