Age-related flexibility of energetic metabolism in the honey bee Apis mellifera.
Apis mellifera carnica
age-related metabolic flexibility
aging
energetic metabolism
mitochondrial respiration
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
17
08
2023
received:
04
04
2023
accepted:
13
09
2023
medline:
30
10
2023
pubmed:
2
10
2023
entrez:
2
10
2023
Statut:
ppublish
Résumé
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Identifiants
pubmed: 37781970
doi: 10.1096/fj.202300654R
doi:
Substances chimiques
Antioxidants
0
RNA, Messenger
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23222Informations de copyright
© 2023 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
Références
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi:10.1016/j.cell.2013.05.039
Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709-713. doi:10.1016/j.cell.2014.10.039
Mitteldorf J. An epigenetic clock controls aging. Biogerontology. 2016;17(1):257-265. doi:10.1007/s10522-015-9617-5
Goldsmith TC. Mammal aging is controlled by an evolvability-based adaptive program. Biochemistry. 2022;87(12-13):1405-1412. doi:10.1134/S000629792212001X
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol. 2019;124:110627. doi:10.1016/j.exger.2019.05.016
Libertini G, Corbi G, Nicola F. Importance and meaning of TERRA sequences for aging mechanisms. Biochemistry. 2020;85(12-13):1505-1517. doi:10.1134/S0006297920120044
Kirkwood TBL, Melov S. On the programmed/non-programmed nature of ageing within the life history. Curr Biol. 2011;21(18):R701-R707. doi:10.1016/j.cub.2011.07.020
Cohen AA. Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9):2680-2689. doi:10.1016/j.bbadis.2017.05.028
Blagosklonny MV. Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle. 2013;12(24):3736-3742. doi:10.4161/cc.27188
Vijg J, Kennedy BK. The essence of aging. Gerontology. 2016;62(4):381-385. doi:10.1159/000439348
Lenart P, Bienertová-Vašků J. Keeping up with the Red Queen: the pace of aging as an adaptation. Biogerontology. 2017;18(4):693-709. doi:10.1007/s10522-016-9674-4
Pearl R. The Rate of Living. University Press London; 1928.
Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145-147. doi:10.1111/j.1532-5415.1972.tb00787.x
Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78:547-581.
Hulbert AJ. On the importance of fatty acid composition of membranes for aging. J Theor Biol. 2005;234:277-288. doi:10.1016/j.jtbi.2004.11.024
Lapointe J, Hekimi S. When a theory of aging ages badly. Cell Mol Life Sci. 2010;67(1):1-8. doi:10.1007/s00018-009-0138-8
Hulbert AJ. Membrane fatty acids as pacemakers of animal metabolism. Lipids. 2007;42(9):811-819. doi:10.1007/s11745-007-3058-0
Amdam GV, Page RE. Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Res Rev. 2005;4:398-408. doi:10.1016/j.arr.2005.03.007
Heinze J, Schrempf A. Aging and reproduction in social insects-a mini-review. Gerontology. 2008;54(3):160-167. doi:10.1159/000122472
Münch D, Amdam GV, Wolschin F. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Funct Ecol. 2008;22(3):407-421. doi:10.1111/j.1365-2435.2008.01419.x
Remolina SC, Hughes KA. Evolution and mechanisms of long life and high fertility in queen honey bees. Age. 2008;30:177-185. doi:10.1007/s11357-008-9061-4
Amdam GV. Social control of aging and frailty in bees. In: Carey JR, Robine JM, Michel JP, Chrieten Y, eds. Longevity and Frailty; Springer Berlin Heidelberg; 2005:18-26.
Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB. Lifetime performance in foraging honeybees: behaviour and physiology. J Exp Biol. 2006;209(19):3828-3836. doi:10.1242/jeb.02450
Quigley TP, Amdam GV, Rueppell O. Honeybee workers as models of aging. In: 706 Conn's Handbook of Models for Human Aging, SECTION III Cellular Models and 707 Invertebrates; Academic Press; 2018:533-547. doi:10.1016/B978-0-12-811353-0.00040-3
Rueppell O, Amdam GV, Robert EPJ, Carey JR. From genes to societies. Sci Aging Knowledge Environ. 2004;5:1-11. doi:10.1126/sageke.2004.5.pe5
Cardoso-Júnior CAM, Yagound B, Ronai I, Remnant EJ, Hartfelder K, Oldroyd BP. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol Ecol. 2021;30(19):4804-4818. doi:10.1111/mec.16098
Simpson SJ, Sword GA, Lo N. Polyphenism in insects. Curr Biol. 2011;21(18):R738-R749. doi:10.1016/j.cub.2011.06.006
de Paula Junior DE, de Oliveira MT, Bruscadin JJ, et al. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera. Insect Mol Biol. 2021;30(1):42-56. doi:10.1111/imb.12671
Cridge AG, Leask MP, Duncan EJ, Dearden PK. What do studies of insect polyphenisms tell us about nutritionally-triggered epigenomic changes and their consequences? Nutrients. 2015;7(3):1787-1797. doi:10.3390/nu7031787
Toth AL, Robinson GE. Worker nutrition and division of labour in honeybees. Anim Behav. 2005;69:427-435. doi:10.1016/j.anbehav.2004.03.017
Giray T, Guzman-Novoa E, Aron CW, Zelinsky B, Fahrbach SE, Robinson GE. Genetic variation in worker temporal polyethism and colony defensiveness in the honeybee Apis mellifera. Behav Ecol. 2000;11(1):44-55.
Johnson BR. Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol. 2010;64:305-316. doi:10.1007/s00265-009-0874-7
Johnson BR. Within-nest temporal polyethism in the honey bee. Behav Ecol Sociobiol. 2008;62:777-784. doi:10.1007/s00265-007-0503-2
Beshers SN, Huang ZY, Oono Y, Robinson GE. Social inhibition and the regulation of temporal polyethism in honey bees. J Theor Biol. 2001;213:461-479. doi:10.1006/jtbi.2001.2427
Robinson GE, Robert EP Jr, Strambi C, Strambi A. Colony integration in honey bees: mechanisms of behavioral reversion. Ethology. 1992;90(4):336-348. doi:10.1111/j.1439-0310.1992.tb00844.x
Huang ZY, Robinson GE. Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol. 1996;39(3):147-158. doi:10.1007/s002650050276
Rueppell O, Bachelier C, Fondrk MK, Robert EP Jr. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp Gerontol. 2007;42(10):1020-1032.
Vance JT, Williams JB, Elekonich MM, Roberts SR. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J Exp Biol. 2009;212(16):2604-2611. doi:10.1242/jeb.028100
Cardoso-Júnior CAM, Guidugli-Lazzarini KR, Hartfelder K. DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers-evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochem Mol Biol. 2018;92:21-29. doi:10.1016/j.ibmb.2017.11.005
Copeland DC, Maes PW, Mott BM, Anderson KE. Changes in gut microbiota and metabolism associated with phenotypic plasticity in the honey bee Apis mellifera. Front Microbiol. 2022;13(December):1-19. doi:10.3389/fmicb.2022.1059001
Herb BR, Wolschin F, Hansen KD, et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci. 2012;15(10):1371-1373. doi:10.1038/nn.3218
Omholt SW, Amdam GV. Epigenetic regulation of aging in honeybee workers. Sci Aging Knowledge Environ. 2004;26:pe28. doi:10.1126/sageke.2004.26.pe28
Harrison JF, Fewell JH. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(2):323-333. doi:10.1016/S1095-6433(02)00163-0
Roberts SP, Elekonich MM. Muscle biochemistry and the ontogeny of flight capacity during behavioral development in the honey bee, Apis mellifera. J Exp Biol. 2005;208(22):4193-4198. doi:10.1242/jeb.01862
Schippers MP, Dukas R, McClelland GB. Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. J Comp Physiol B Biochem Syst Environ Physiol. 2010;180(1):45-55. doi:10.1007/s00360-009-0386-9
Hedges CP, Wilkinson RT, Devaux JBL, Hickey AJR. Hymenoptera flight muscle mitochondrial function: increasing metabolic power increases oxidative stress. Comp Biochem Physiol Part A Mol Integr Physiol. 2019;230:115-121. doi:10.1016/j.cbpa.2019.01.002
Beenakkers AMT, Van der Horst D, Van Marrewijk WJ. Insect flight muscle metabolism. Insect Biochem. 1984;14(3):243-260.
Margotta JW, Roberts SP, Elekonich MM. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J Exp Biol. 2018;221(14):jeb183228. doi:10.1242/JEB.183228
Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A. Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol. 2002;282:985-992. doi:10.1152/ajpregu.00537.2001
Navarro A, Gómez C, Sánchez-Pino MJ, et al. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol. 2005;289:1392-1399. doi:10.1152/ajpregu.00834.2004
Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004;287:1244-1249. doi:10.1152/ajpregu.00226.2004
Navarro A, Gomez C, López-Cepero JM, Boveris A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol. 2004;286:505-511. doi:10.1152/ajpregu.00208.2003
Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A. 1996;93(10):4765-4769. doi:10.1073/pnas.93.10.4765
Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci U S A. 2013;110(38):15301-15306. doi:10.1073/pnas.1305462110
Brunetti D, Bottani E, Segala A, et al. Targeting multiple mitochondrial processes by a metabolic modulator prevents sarcopenia and cognitive decline in SAMP8 mice. Front Pharmacol. 2020;11(July):1-16. doi:10.3389/fphar.2020.01171
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell. 2017;16(5):943-955. doi:10.1111/acel.12650
Havukainen H, Münch D, Baumann A, et al. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem. 2013;288(39):28369-28381. doi:10.1074/jbc.M113.465021
Park HG, Sik K, Yeon B, et al. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev Comp Immunol. 2018;85:51-60. doi:10.1016/j.dci.2018.04.001
Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A. 2006;103(4):962-967. doi:10.1073/pnas.0502681103
Raikhel AS, Dhadialla TS. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol. 1992;37(1):217-251. doi:10.1146/annurev.en.37.010192.001245
Falchuk KH, Montorzi M. Zinc physiology and biochemistry in oocytes and embryos. Biometals. 2001;14:385-395.
Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277-284.
Corona M, Velarde RA, Remolina S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A. 2007;104(17):7128-7133.
Suarez RK, Darveau CA, Welch KC, O'Brien DM, Roubik DW, Hochachka PW. Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. J Exp Biol. 2005;208(18):3573-3579. doi:10.1242/jeb.01775
Münch D, Amdam GV. The curious case of aging plasticity in honey bees. FEBS Lett. 2010;584(12):2496-2503. doi:10.1016/j.febslet.2010.04.007
Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Predictive markers of honey bee colony collapse. PLoS One. 2012;7(2):e32151. doi:10.1371/journal.pone.0032151
Rothe U, Nachtigall W. Flight of the honey bee. J Comp Physiol B. 1989;158(6):739-749. doi:10.1007/BF00693012
McDonald AE, Pichaud N, Darveau CA. “Alternative” fuels contributing to mitochondrial electron transport: importance of non-classical pathways in the diversity of animal metabolism. Comp Biochem Physiol Part B Biochem Mol Biol. 2018;224:185-194. doi:10.1016/j.cbpb.2017.11.006
Cormier SB, Léger A, Boudreau LH, Pichaud N. Overwintering in North American domesticated honeybees (Apis mellifera) causes mitochondrial reprogramming while enhancing cellular immunity. J Exp Biol. 2022;225(16):1-13. doi:10.1242/jeb.244440
Menail HA, Cormier SB, Ben Youssef M, et al. Flexible thermal sensitivity of mitochondrial oxygen consumption and substrate oxidation in flying insect species. Front Physiol. 2022;13:1-15. doi:10.3389/fphys.2022.897174
Syromyatnikov MY, Gureev AP, Vitkalova IY, Starkov AA, Popov VN. Unique features of flight muscles mitochondria of honey bees (Apis mellifera L.). Arch Insect Biochem Physiol. 2019;102(1):1-14. doi:10.1002/arch.21595
Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta. 2013;1827:401-410. doi:10.1016/j.bbabio.2012.11.014
Williams GR, Alaux C, Costa C, et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res. 2013;52(1):1-36. doi:10.3896/IBRA.1.52.1.04
Cormier RPJ, Champigny CM, Simard CJ, St-Coeur PD, Pichaud N. Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster. Sci Rep. 2019;9(1):1-11. doi:10.1038/s41598-018-36060-5
Simard CJ, Pelletier G, Boudreau LH, Hebert-Chatelain E, Pichaud N. Measurement of mitochondrial oxygen consumption in permeabilized fibers of drosophila using minimal amounts of tissue. J Vis Exp. 2018;134:1-9. doi:10.3791/57376
Pesta D, Gnaiger E. High-resolution Respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of Human muscle. In: Palmeira CM, Moreno AJ, eds. BT-Mitochondrial Bioenergetics: Methods and Protocols. Humana Press; 2012:25-58. doi:10.1007/978-1-61779-382-0_3
Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76-85. doi:10.1016/0003-2697(85)90442-7
Hsiao JJ, Potter OG, Genevieve C, et al. Improved LC/MS methods for the analysis of anionic Analytes. Agilent Technologies; 2018.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):16-21.
Zahn JM, Sonu R, Vogel H, et al. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2006;2(7):e115. doi:10.1371/journal.pgen.0020115
Pletcher SD, Macdonald SJ, Marguerie R, et al. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol. 2002;12(9):712-723. doi:10.1016/S0960-9822(02)00808-4
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292(2):670-686. doi:10.1152/ajpcell.00213.2006
McCarroll SA, Murphy CT, Zou S, et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet. 2004;36(2):5-7. doi:10.1038/ng1291
Landis GN, Abdueva D, Skvortsov D, et al. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2004;101(20):7663-7668. doi:10.1073/pnas.0307605101
Landis G, Shen J, Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging. 2012;4(11):768-789. doi:10.18632/aging.100499
Cervoni MS, Cardoso-Junior CAM, Craveiro G, De Souza AO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee (Apis mellifera L.) workers. J Exp Biol. 2017;220(21):4035-4046. doi:10.1242/jeb.161844
Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res. 2014;38(12):2896-2906. doi:10.1111/acer.12576
Ataullakhanov FI, Vitvitsky VM. What determines the intracellular ATP concentration. Biosci Rep. 2002;22(5-6):501-511. doi:10.1023/A:1022069718709
Chuang YL, Hsu CY. Changes in mitochondrial energy utilization in young and old worker honeybees (Apis mellifera). Age. 2013;35(5):1867-1879. doi:10.1007/s11357-012-9490-y
Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press; 2002 ISBN 0-19-511702-6; 0-19-898 511703-4.
Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mellor J. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem. 1986;261(1):376-380. doi:10.1016/s0021-9258(17)42482-3
Santos DE, Alberici LC, Hartfelder K. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development. Insect Biochem Mol Biol. 2016;73:1-11. doi:10.1016/j.ibmb.2016.04.001
Campbell JB, Nath R, Gadau J, Fox T, DeGrandi-Hoffman G, Harrison JF. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. J Insect Physiol. 2016;86:11-16. doi:10.1016/j.jinsphys.2015.12.003
Crailsheim K. The protein balance of the honey bee worker. Apidologie. 1990;21(5):417-429. doi:10.1051/apido:19900504
Pirk CWW, Boodhoo C, Human H, Nicolson SW. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie. 2010;41(1):62-72. doi:10.1051/apido/2009055
Bunning H, Bassett L, Clowser C, et al. Dietary choice for a balanced nutrient intake increases the mean and reduces the variance in the reproductive performance of male and female cockroaches. Ecol Evol. 2016;6(14):4711-4730. doi:10.1002/ece3.2243
Rapkin J, Archer CR, Grant CE, et al. Little evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and reproduction in the black field cricket Teleogryllus commodus. Evolution. 2017;71(9):2159-2177. doi:10.1111/evo.13299
Archer CR, Pirk CWW, Wright GA, Nicolson SW. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct Ecol. 2014;28:913-923. doi:10.1111/1365-2435.12226
Malod K, Archer CR, Hunt J, Nicolson SW, Weldon CW. Effects of macronutrient intake on the lifespan and fecundity of the Marula fruit fly, Ceratitis cosyra (Tephritidae): extreme lifespan in a host specialist. Ecol Evol. 2017;7(22):9808-9817. doi:10.1002/ece3.3543
Carey MR, Archer CR, Rapkin J, et al. Mapping sex differences in the effects of protein and carbohydrates on lifespan and reproduction in Drosophila melanogaster: is measuring nutrient intake essential? Biogerontology. 2022;23(1):129-144. doi:10.1007/s10522-022-09953-2
Harrison SJ, Raubenheimer D, Simpson SJ, Godin JGJ, Bertram SM. Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc R Soc B Biol Sci. 2014;281(1792):20140539. doi:10.1098/rspb.2014.0539
Kim K, Jang T, Min KJ, Lee KP. Effects of dietary protein:carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol Exp Appl. 2019;168(6-7):482-491. doi:10.1111/eea.12855
Fanson BG, Taylor PW. Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age. 2012;34(6):1361-1368. doi:10.1007/s11357-011-9308-3
De Verges J, Nehring V. A critical look at proximate causes of social insect senescence: damage accumulation or hyperfunction? Curr Opin Insect Sci. 2016;16:69-75. doi:10.1016/j.cois.2016.05.003
Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J. 2005;390(2):501-511. doi:10.1042/BJ20042130
Dubessay P, Garreau-Balandier I, Jarrousse AS, et al. Aging impact on biochemical activities and gene expression of Drosophila melanogaster mitochondria. Biochimie. 2007;89(8):988-1001. doi:10.1016/j.biochi.2007.03.018
Song Y, Yang J, Law AD, et al. Age-dependent effects of blue light exposure on lifespan, neurodegeneration, and mitochondria physiology in Drosophila melanogaster. npj Aging. 2022;8(1):1-9. doi:10.1038/s41514-022-00092-z
Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res. 2007;10(2):215-223. doi:10.1089/rej.2006.0516
Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 2017;220(7):1170-1180. doi:10.1242/jeb.132142
Herrero A, Barja G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev. 1997;98(2):95-111. doi:10.1016/S0047-6374(97)00076-6
Barja G, Cadenas S, Rojas C, López-Torres M, Pèrez-Campo R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals. Comp Biochem Physiol Part B Biochem. 1994;108(4):501-512. doi:10.1016/0305-0491(94)90103-1
Barja G. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc. 2004;79(2):235-251. doi:10.1017/S1464793103006213
Gredilla R, Sanz A, Lopez-torres M, Barja G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J. 2001;15(9):1589-1591. doi:10.1096/fj.00-0764fje
Magwere T, Pamplona R, Miwa S, et al. Flight activity, mortality rates, and lipoxidative damage in Drosophila. Journals Gerontol Ser A Biol Sci Med Sci. 2006;61(2):136-145. doi:10.1093/gerona/61.2.136
Corona M, Hughes KA, Weaver DB, Robinson GE. Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev. 2005;126(11):1230-1238. doi:10.1016/j.mad.2005.07.004
Sohal RS. Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Radic Biol Med. 1993;14:583-588.
Schwarze SR, Weindruch R, Aiken JM. Oxidative stress and aging reduce cox I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med. 1998;25(6):740-747. doi:10.1016/S0891-5849(98)00153-1
Calleja M, Pena P, Ugalde C, Ferreiro C, Marco R, Garesse R. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem. 1993;268(25):18891-18897. doi:10.1016/s0021-9258(17)46710-x
Suarez RK, Staples JF, Lighton JRB, Mathieu-Costello O. Mitochondrial function in flying honeybees (Apis mellifera): respiratory chain enzymes and electron flow from complex III to oxygen. J Exp Biol. 2000;203(5):905-911. doi:10.1242/jeb.203.5.905
Wojtas K, Slepecky N, von Kalm L, Sullivan D. Flight muscle function in Drosophila requires colocalization of glycolytic enzymes. Mol Biol Cell. 1997;8:1665-1675. doi:10.1091/mbc.8.9.1665
Sullivan JP, Fahrbach SE, Harrison JF, Capaldi EA, Fewell JH, Robinson GE. Juvenile hormone and division of labor in honey bee colonies: effects of allatectomy on flight behavior and metabolism. J Exp Biol. 2003;206:2287-2296. doi:10.1242/jeb.00432
Amdam GV, Ihle KE, Page RE. Regulation of honeybee worker (Apis mellifera) life histories by vitellogenin. Hormones, Brain and Behavior Online. Elsevier Inc; 2009:1003-1027.
Piulachs MD, Guidugli KR, Barchuk AR, Cruz J, Simões ZLP, Bellés X. The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochem Mol Biol. 2003;33(4):459-465. doi:10.1016/S0965-1748(03)00021-3
Fluri P, Lüscher M, Wille H, Gerig L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol. 1982;28(1):61-68. doi:10.1016/0022-1910(82)90023-3
Hsu CY, Hsieh YS. Oxidative stress decreases in the trophocytes and fat cells of worker honeybees during aging. Biogerontology. 2014;15(2):129-137. doi:10.1007/s10522-013-9485-9
Williams JB, Roberts SP, Elekonich MM. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol. 2008;43(6):538-549. doi:10.1016/j.exger.2008.02.001
Richardson A, Cheung HT. The relationship between age-related changes in gene expression, protein turnover, and the responsiveness of an organism to stimuli. Life Sci. 1982;31(7):605-613. doi:10.1016/0024-3205(82)90761-5
Fan JY, Ling LH, Jie WL, Hsu T, Yu FC. Coordinated organization of mitochondrial lamellar cristae and gain of COX function during mitochondrial maturation in Drosophila. Mol Biol Cell. 2020;31(1):18-26. doi:10.1091/mbc.E19-08-0450
Ryazanov AG, Nefsky BS. Protein turnover plays a key role in aging. Mech Ageing Dev. 2002;123(2-3):207-213. doi:10.1016/S0047-6374(01)00337-2
Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol. 2015;60:435-452. doi:10.1146/annurev-ento-010814-020803
Lockett GA, Kucharski R, Maleszka R. DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes Brain Behav. 2012;11(2):235-242. doi:10.1111/j.1601-183X.2011.00751.x
Li-Byarlay H, Li Y, Stroud H, et al. RNA interference knockdown of DNA methyltransferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci U S A. 2013;110(31):12750-12755. doi:10.1073/pnas.1310735110
Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers: epigenetics in honey bee communication. Biol Lett. 2020;16(12):20200440. doi:10.1098/rsbl.2020.0440
Duncan EJ, Cunningham CB, Dearden PK. Phenotypic plasticity: what has DNA methylation got to do with it? Insects. 2022;13(2):1-17. doi:10.3390/insects13020110
Wedd L, Maleszka R. DNA methylation and gene regulation in honeybees: from genome-wide analyses to obligatory epialleles. Adv Exp Med Biol. 2016;945:193-211. doi:10.1007/978-3-319-43624-1_9
Kramer BH, Nehring V, Buttstedt A, et al. Oxidative stress and senescence in social insects: a significant but inconsistent link? Philos Trans R Soc B Biol Sci. 2021;376(1823):20190732. doi:10.1098/rstb.2019.0732
Harrison JM. Caste-specific changes in honeybee flight capacity. Div Comp Biochem Soc Integr Comp Biol. 1986;59(2):175-187.
Rueppell O, Christine S, Mulcrone C, Groves L. Aging without functional senescence in honey bee workers. Curr Biol. 2007;17(8):274-275.