An Oxysulfide Photocatalyst Evolving Hydrogen with an Apparent Quantum Efficiency of 30 % under Visible Light.
Cocatalyst
Hydrogen Evolution
Oxysulfide
Transient Diffuse Reflectance Spectroscopy
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
received:
01
09
2023
medline:
3
10
2023
pubmed:
3
10
2023
entrez:
3
10
2023
Statut:
ppublish
Résumé
Photocatalytic water splitting is a simple means of converting solar energy into storable hydrogen energy. Narrow-band gap oxysulfide photocatalysts have attracted much attention in this regard owing to the significant visible-light absorption and relatively high stability of these compounds. However, existing materials suffer from low efficiencies due to difficulties in synthesizing these oxysulfides with suitable degrees of crystallinity and particle sizes, and in constructing effective reaction sites. The present work demonstrates the production of a Gd
Identifiants
pubmed: 37786233
doi: 10.1002/anie.202312938
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202312938Subventions
Organisme : New Energy and Industrial Technology Development Organization
Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterloh, S. Ardo, Energy Environ. Sci. 2015, 8, 2825-2850;
F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294-2320.
R. van de Krol, B. A. Parkinson, MRS Energy Sustainability 2017, 4, 13;
T. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387-399.
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411-414.
H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 2021, 598, 304-307.
A. Yamakata, J. J. M. Vequizo, T. Ogawa, K. Kato, S. Tsuboi, N. Furutani, M. Ohtsuka, S. Muto, A. Kuwabara, Y. Sakata, ACS Catal. 2021, 11, 1911-1919.
Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, J. Mater. Chem. A 2018, 6, 11606-11630;
A. Kudo, Int. J. Hydrogen Energy 2006, 31, 197-202.
M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 2016, 1, 16151;
Z. Wang, Y. Qi, C. Ding, D. Fan, G. Liu, Y. Zhao, C. Li, Chem. Sci. 2016, 7, 4391-4399.
A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547-13553;
A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. B 2004, 108, 2637-2642;
Z. Pan, Q. Xiao, S. Chen, Z. Wang, L. Lin, M. Nakabayashi, N. Shibata, T. Takata, T. Hisatomi, K. Domen, J. Catal. 2021, 399, 230-236.
Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, N. Shibata, T. Takata, K. Domen, Nat. Mater. 2019, 18, 827-832;
V. Nandal, R. Shoji, H. Matsuzaki, A. Furube, L. Lin, T. Hisatomi, M. Kaneko, K. Yamashita, K. Domen, K. Seki, Nat. Commun. 2021, 12, 7055;
Z. Pan, H. Yoshida, L. Lin, Q. Xiao, M. Nakabayashi, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Res. Chem. Intermed. 2021, 47, 225-234;
H. Yoshida, Z. Pan, R. Shoji, V. Nandal, H. Matsuzaki, K. Seki, T. Hisatomi, K. Domen, J. Mater. Chem. A 2022, 10, 24552-24560.
G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, K. Domen, J. Phys. Chem. Lett. 2016, 7, 3892-3896;
Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shibata, Y. Ikuhara, K. Domen, Nat. Catal. 2018, 1, 756-763;
M. Matsukawa, R. Ishikawa, T. Hisatomi, Y. Moriya, N. Shibata, J. Kubota, Y. Ikuhara, K. Domen, Nano Lett. 2014, 14, 1038-1041;
T. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu, K. Domen, Nat. Commun. 2022, 13, 1034.
J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900-1909.
Z. Wang, Y. Luo, T. Hisatomi, J. J. M. Vequizo, S. Suzuki, S. Chen, M. Nakabayashi, L. Lin, Z. Pan, N. Kariya, A. Yamakata, N. Shibata, T. Takata, K. Teshima, K. Domen, Nat. Commun. 2021, 12, 1005;
S. Chen, J. J. M. Vequizo, T. Hisatomi, M. Nakabayashi, L. Lin, Z. Wang, A. Yamakata, N. Shibata, T. Takata, T. Yamada, K. Domen, Chem. Sci. 2020, 11, 6436-6441;
J. Liu, X. Xue, X. Zhou, G. Chen, W. Liu, RSC Adv. 2021, 11, 26908-26914.
Q. Xiao, J. Xiao, J. J. M. Vequizo, T. Hisatomi, M. Nakabayashi, S. Chen, Z. Pan, L. Lin, N. Shibata, A. Yamakata, T. Takata, K. Domen, J. Mater. Chem. A 2021, 9, 27485-27492.
M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa, K. Domen, J. Phys. Chem. C 2009, 113, 10151-10157.
M. Qureshi, T. Shinagawa, N. Tsiapis, K. Takanabe, ACS Sustainable Chem. Eng. 2017, 5, 8079-8088.
K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. Int. Ed. 2006, 45, 7806-7809.
J. Yang, H. Yan, X. Wang, F. Wen, Z. Wang, D. Fan, J. Shi, C. Li, J. Catal. 2012, 290, 151-157;
F. Zhang, K. Maeda, T. Takata, K. Domen, J. Catal. 2011, 280, 1-7.
J. Schneider, D. W. Bahnemann, J. Phys. Chem. Lett. 2013, 4, 3479-3483.
W. Zhao, K. Maeda, F. Zhang, T. Hisatomi, K. Domen, Phys. Chem. Chem. Phys. 2014, 16, 12051-12056;
G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, C. Li, Energy Environ. Sci. 2016, 9, 1327-1334.
H. Zhou, Y. Qu, T. Zeid, X. Duan, Energy Environ. Sci. 2012, 5, 6732-6743;
Z. Pan, R. Yanagi, Q. Wang, X. Shen, Q. Zhu, Y. Xue, J. A. Röhr, T. Hisatomi, K. Domen, S. Hu, Energy Environ. Sci. 2020, 13, 162-173.
C. M. Pelicano, M. Saruyama, R. Takahata, R. Sato, Y. Kitahama, H. Matsuzaki, T. Yamada, T. Hisatomi, K. Domen, T. Teranishi, Adv. Funct. Mater. 2022, 32, 2202987;
G. Xin, B. Yu, Y. Xia, T. Hu, L. Liu, C. Li, J. Phys. Chem. C 2014, 118, 21928-21934;
W. Kurashige, Y. Mori, S. Ozaki, M. Kawachi, S. Hossain, T. Kawawaki, C. J. Shearer, A. Iwase, G. F. Metha, S. Yamazoe, A. Kudo, Y. Negishi, Angew. Chem. Int. Ed. 2020, 59, 7076-7082;
M. Qureshi, A. T. Garcia-Esparza, G. Jeantelot, S. Ould-Chikh, A. Aguilar-Tapia, J.-L. Hazemann, J.-M. Basset, D. Loffreda, T. Le Bahers, K. Takanabe, J. Catal. 2019, 376, 180-190.
Y. Miseki, Y. Majima, T. Gunji, K. Sayama, Chem. Lett. 2014, 43, 1560-1562.
K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, K. Domen, Angew. Chem. Int. Ed. 2010, 122, 4190-4193;
R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 2013, 4, 1432.
R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase, A. Kudo, Chem. Commun. 2014, 50, 2543-2546;
S. Suzuki, H. Matsumoto, A. Iwase, A. Kudo, Chem. Commun. 2018, 54, 10606-10609.
S. M. Sze, Y. Li, K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Hoboken 2021.