Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers.
Journal
Chaos (Woodbury, N.Y.)
ISSN: 1089-7682
Titre abrégé: Chaos
Pays: United States
ID NLM: 100971574
Informations de publication
Date de publication:
01 Oct 2023
01 Oct 2023
Historique:
received:
04
05
2023
accepted:
14
08
2023
medline:
3
10
2023
pubmed:
3
10
2023
entrez:
3
10
2023
Statut:
ppublish
Résumé
Drawing on ergodic theory, we introduce a novel training method for machine learning based forecasting methods for chaotic dynamical systems. The training enforces dynamical invariants-such as the Lyapunov exponent spectrum and the fractal dimension-in the systems of interest, enabling longer and more stable forecasts when operating with limited data. The technique is demonstrated in detail using reservoir computing, a specific kind of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical system and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for numerical weather prediction.
Identifiants
pubmed: 37788385
pii: 2914133
doi: 10.1063/5.0156999
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 Author(s). Published under an exclusive license by AIP Publishing.