Teleost genomic repeat landscapes in light of diversification rates and ecology.

Diversification Genome dynamics Genome size Repetitive DNA Short tandem repeats Transposable elements

Journal

Mobile DNA
ISSN: 1759-8753
Titre abrégé: Mob DNA
Pays: England
ID NLM: 101519891

Informations de publication

Date de publication:
03 Oct 2023
Historique:
received: 28 04 2023
accepted: 20 09 2023
medline: 4 10 2023
pubmed: 4 10 2023
entrez: 3 10 2023
Statut: epublish

Résumé

Repetitive DNA make up a considerable fraction of most eukaryotic genomes. In fish, transposable element (TE) activity has coincided with rapid species diversification. Here, we annotated the repetitive content in 100 genome assemblies, covering the major branches of the diverse lineage of teleost fish. We investigated if TE content correlates with family level net diversification rates and found support for a weak negative correlation. Further, we demonstrated that TE proportion correlates with genome size, but not to the proportion of short tandem repeats (STRs), which implies independent evolutionary paths. Marine and freshwater fish had large differences in STR content, with the most extreme propagation detected in the genomes of codfish species and Atlantic herring. Such a high density of STRs is likely to increase the mutational load, which we propose could be counterbalanced by high fecundity as seen in codfishes and herring.

Identifiants

pubmed: 37789366
doi: 10.1186/s13100-023-00302-9
pii: 10.1186/s13100-023-00302-9
pmc: PMC10546739
doi:

Types de publication

Journal Article

Langues

eng

Pagination

14

Subventions

Organisme : Wellcome Trust
ID : 222378
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 222378
Pays : United Kingdom

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987;4:203–21.
pubmed: 3328815
Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–35.
pubmed: 1251186 doi: 10.1126/science.1251186
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.
pubmed: 15153996 doi: 10.1038/nrg1348
Pasquesi GIM, et al. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun. 2018;9:2774.
pubmed: 30018307 pmcid: 6050309 doi: 10.1038/s41467-018-05279-1
Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9:411–2.
pubmed: 18421312 doi: 10.1038/nrg2165-c1
Tørresen, et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–1006.
pubmed: 31584084 pmcid: 6868369 doi: 10.1093/nar/gkz841
Chalopin D, Naville M, Plard F, Galiana D, Volff J-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7:567–80.
pubmed: 25577199 pmcid: 4350176 doi: 10.1093/gbe/evv005
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res. 2015;147:217–39.
pubmed: 26967166 doi: 10.1159/000444429
Kapusta A, Suh A, Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A. 2017;114:E1460–9.
pubmed: 28179571 pmcid: 5338432 doi: 10.1073/pnas.1616702114
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile elements in ray-finned fish genomes. Life (Basel). 2020;10:221.
pubmed: 32992841
Gao B, et al. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA. 2016;7:4.
pubmed: 26862351 pmcid: 4746887 doi: 10.1186/s13100-016-0059-7
Yuan Z, et al. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics. 2018;19:141.
pubmed: 29439662 pmcid: 5811955 doi: 10.1186/s12864-018-4516-1
Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010;15:471–8.
pubmed: 20541961 doi: 10.1016/j.tplants.2010.05.003
Hancock JM. Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects. Genetica. 2002;115:93–103.
pubmed: 12188051 doi: 10.1023/A:1016028332006
Hancock JM. Simple sequences and the expanding genome. BioEssays. 1996;18:421–5.
pubmed: 8639165 doi: 10.1002/bies.950180512
Mayer C, Leese F, Tollrian R. Genome-wide analysis of tandem repeats in Daphnia pulex - a comparative approach. BMC Genomics. 2010;11:277.
pubmed: 20433735 pmcid: 3152781 doi: 10.1186/1471-2164-11-277
Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002;30:194–200.
pubmed: 11799393 doi: 10.1038/ng822
Hardie DC, Hebert PDN. Genome-size evolution in fishes. Can J Fish Aquat Sci. 2004;61:1636–46.
doi: 10.1139/f04-106
Almojil D, et al. The structural, functional and evolutionary impact of transposable elements in eukaryotes. Genes (Basel). 2021;12:918.
pubmed: 34203645 doi: 10.3390/genes12060918
McClintock B. The significance of responses of the genome to challenge. Science. 1984;226:792–801.
pubmed: 15739260 doi: 10.1126/science.15739260
Schrader L, et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat Commun. 2014;5:5495.
pubmed: 25510865 doi: 10.1038/ncomms6495
Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: towards new species. Gene. 2010;454:1–7.
pubmed: 20102733 doi: 10.1016/j.gene.2010.01.003
Ricci M, Peona V, Guichard E, Taccioli C, Boattini A. Transposable elements activity is positively related to rate of speciation in mammals. J Mol Evol. 2018;86:303–10.
pubmed: 29855654 pmcid: 6028844 doi: 10.1007/s00239-018-9847-7
de Boer JG, Yazawa R, Davidson WS, Koop BF. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics. 2007;8:422.
pubmed: 18021408 pmcid: 2198921 doi: 10.1186/1471-2164-8-422
Brawand D, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81.
pubmed: 25186727 pmcid: 4353498 doi: 10.1038/nature13726
Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat Rev Genet. 2018;19:705–17.
pubmed: 30111830 doi: 10.1038/s41576-018-0043-9
Gemayel R, et al. Variable Glutamine-Rich repeats modulate transcription factor activity. Mol Cell. 2015;59:615–27.
pubmed: 26257283 pmcid: 4543046 doi: 10.1016/j.molcel.2015.07.003
Gymrek M, et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet. 2016;48:22–9.
pubmed: 26642241 doi: 10.1038/ng.3461
Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C. Massive variation of short tandem repeats with functional consequences across strains of. Genome Res. 2018;28:1169–78.
pubmed: 29970452 pmcid: 6071631 doi: 10.1101/gr.231753.117
Reinar WB, Olsson Lalun V, Reitan T, Jakobsen KS, Butenko MA. Length variation in short tandem repeats affects gene expression in natural populations of Arabidopsis thaliana. Plant Cell. 2021;33(7):2221–34. 
Adams RH, et al. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome. 2016;59:295–310.
pubmed: 27064176 doi: 10.1139/gen-2015-0124
Tørresen OK, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18:95.
pubmed: 28100185 pmcid: 5241972 doi: 10.1186/s12864-016-3448-x
Tørresen OK, et al. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics. 2018;19:240.
pubmed: 29636006 pmcid: 5894186 doi: 10.1186/s12864-018-4616-y
Willems T, et al. The landscape of human STR variation. Genome Res. 2014;24:1894–904.
pubmed: 25135957 pmcid: 4216929 doi: 10.1101/gr.177774.114
Reinar WB, et al. Adaptive protein evolution through length variation of short tandem repeats in Arabidopsis. Sci Adv. 2023;9(12):eadd6960.
Simon M, Hancock JM. Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 2009;10:R59.
pubmed: 19486509 pmcid: 2718493 doi: 10.1186/gb-2009-10-6-r59
Huntley MA, Clark AG. Evolutionary analysis of amino acid repeats across the genomes of 12 Drosophila species. Mol Biol Evol. 2007;24:2598–609.
pubmed: 17602168 doi: 10.1093/molbev/msm129
Quilez J, et al. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans. Nucleic Acids Res. 2016;44:3750–62.
pubmed: 27060133 pmcid: 4857002 doi: 10.1093/nar/gkw219
Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ. Unstable tandem repeats in promoters confer transcriptional evolvability. Science. 2009;324:1213–6.
pubmed: 19478187 pmcid: 3132887 doi: 10.1126/science.1170097
Hefferon TW, Groman JD, Yurk CE, Cutting GR. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci U S A. 2004;101:3504–9.
pubmed: 14993601 pmcid: 373492 doi: 10.1073/pnas.0400182101
Malmstrøm M, et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat Genet. 2016;48:1204–10.
pubmed: 27548311 doi: 10.1038/ng.3645
Malmstrøm M, Matschiner M, Tørresen OK, Jakobsen KS, Jentoft S. Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data. 2017;4:160132.
pubmed: 28094797 pmcid: 5240625 doi: 10.1038/sdata.2016.132
Musilova Z, et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science. 2019;364:588–92.
pubmed: 31073066 pmcid: 6628886 doi: 10.1126/science.aav4632
Froese R, Pauly D. 06/2018. FishBase. www.fishbase.org .
Balon EK. 1990. Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. 1. 1. https://journal.lib.uoguelph.ca/index.php/gir/article/view/64 (Accessed 17 Sept 2019).
Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc. Biol. Sci. 2016;283. https://doi.org/10.1098/rspb.2016.1334 .
Kolm N, Ahnesjo I. Do egg size and parental care coevolve in fishes? J Fish Biol. 2005;66:1499–515.
doi: 10.1111/j.0022-1112.2005.00777.x
Duarte CM, Alcaraz M. To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia. 1989;80:401–4.
pubmed: 28312069 doi: 10.1007/BF00379043
Graur D. An upper limit on the functional fraction of the human genome. Genome Biol Evol. 2017;9:1880–5.
pubmed: 28854598 pmcid: 5570035 doi: 10.1093/gbe/evx121
Nei M. 2013. Mutation-Driven Evolution. OUP Oxford.
Barneche DR, Robertson DR, White CR, Marshall DJ. Fish reproductive-energy output increases disproportionately with body size. Science. 2018;360:642–5.
pubmed: 29748282 doi: 10.1126/science.aao6868
Brunet TDP, Doolittle WF. Multilevel selection theory and the evolutionary functions of transposable elements. Genome Biol Evol. 2015;7:2445–57.
pubmed: 26253318 pmcid: 4558868 doi: 10.1093/gbe/evv152
Doolittle WF, Brunet TDP. On causal roles and selected effects: our genome is mostly junk. BMC Biol. 2017;15:116.
pubmed: 29207982 pmcid: 5718017 doi: 10.1186/s12915-017-0460-9
Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284:601–3.
pubmed: 6245369 doi: 10.1038/284601a0
Santos ME, et al. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat Commun. 2014;5:5149.
pubmed: 25296686 doi: 10.1038/ncomms6149
Simpson JT, Pop M. The theory and practice of genome sequence assembly. Annu Rev Genomics Hum Genet. 2015;16:153–72.
pubmed: 25939056 doi: 10.1146/annurev-genom-090314-050032
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13:36–46.
pubmed: 22124482 pmcid: 3324860 doi: 10.1038/nrg3117
Smit A, Hubley R. 2008–2015. RepeatModeler Open-1.0. http://www.repeatmasker.org .
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18.
pubmed: 18194517 pmcid: 2253517 doi: 10.1186/1471-2105-9-18
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–9.
pubmed: 23842809 pmcid: 3777106 doi: 10.1093/bioinformatics/btt403
Llorens C, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39:D70–4.
pubmed: 21036865 doi: 10.1093/nar/gkq1061
Hubley R, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44:D81–9.
pubmed: 26612867 doi: 10.1093/nar/gkv1272
Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M. De Novo Assembly and Annotation of the Asian Tiger Mosquito (Aedes albopictus) Repeatome with dnaPipeTE from Raw Genomic Reads and Comparative Analysis with the Yellow Fever Mosquito (Aedes aegypti). 2015. Genome Biol. Evol. 7:1192-1205
Betancur-R R et al. The tree of life and a new classification of bony fishes. PLoS Curr Tree of Life. 2013. Edition 1.
Magallón S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–80.
pubmed: 11681732
Rabosky DL, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018;559:392.
pubmed: 29973726 doi: 10.1038/s41586-018-0273-1
Orme, D et al. CAPER: comparative analyses of phylogenetics and evolution in R. 2018. R package version 1.0.1.
Manni M, Berkeley MR, Seppey M, Simão F, Zdobnov E. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–54.
pubmed: 34320186 pmcid: 8476166 doi: 10.1093/molbev/msab199

Auteurs

William B Reinar (WB)

Department of Biosciences, University of Oslo, Oslo, Norway. w.b.reinar@ibv.uio.no.

Ole K Tørresen (OK)

Department of Biosciences, University of Oslo, Oslo, Norway.

Alexander J Nederbragt (AJ)

Department of Biosciences, University of Oslo, Oslo, Norway.
Department of Informatics, University of Oslo, Oslo, Norway.

Michael Matschiner (M)

Department of Biosciences, University of Oslo, Oslo, Norway.
University of Oslo, Natural History Museum, Oslo, Norway.

Sissel Jentoft (S)

Department of Biosciences, University of Oslo, Oslo, Norway.

Kjetill S Jakobsen (KS)

Department of Biosciences, University of Oslo, Oslo, Norway. k.s.jakobsen@ibv.uio.no.

Classifications MeSH