Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure.

3D printing PCL bone implant calcium phosphate critical-sized bone defect extrusion-based printing osteogenic differentiation scaffold

Journal

Frontiers in bioengineering and biotechnology
ISSN: 2296-4185
Titre abrégé: Front Bioeng Biotechnol
Pays: Switzerland
ID NLM: 101632513

Informations de publication

Date de publication:
2023
Historique:
received: 27 07 2023
accepted: 04 09 2023
medline: 4 10 2023
pubmed: 4 10 2023
entrez: 4 10 2023
Statut: epublish

Résumé

Critical-sized bone defects resulting from trauma, inflammation, and tumor resections are individual in their size and shape. Implants for the treatment of such defects have to consider biomechanical and biomedical factors, as well as the individual conditions within the implantation site. In this context, 3D printing technologies offer new possibilities to design and produce patient-specific implants reflecting the outer shape and internal structure of the replaced bone tissue. The selection or modification of materials used in 3D printing enables the adaption of the implant, by enhancing the osteoinductive or biomechanical properties. In this study, scaffolds with bone spongiosa-inspired structure for extrusion-based 3D printing were generated. The computer aided design process resulted in an up scaled and simplified version of the bone spongiosa. To enhance the osteoinductive properties of the 3D printed construct, polycaprolactone (PCL) was combined with 20% (wt) calcium phosphate nano powder (CaP). The implants were designed in form of a ring structure and revealed an irregular and interconnected porous structure with a calculated porosity of 35.2% and a compression strength within the range of the natural cancellous bone. The implants were assessed in terms of biocompatibility and osteoinductivity using the osteosarcoma cell line MG63 and patient-derived mesenchymal stem cells in selected experiments. Cell growth and differentiation over 14 days were monitored using confocal laser scanning microscopy, scanning electron microscopy, deoxyribonucleic acid (DNA) quantification, gene expression analysis, and quantitative assessment of calcification. MG63 cells and human mesenchymal stem cells (hMSC) adhered to the printed implants and revealed a typical elongated morphology as indicated by microscopy. Using DNA quantification, no differences for PCL or PCL-CaP in the initial adhesion of MG63 cells were observed, while the PCL-based scaffolds favored cell proliferation in the early phases of culture up to 7 days. In contrast, on PCL-CaP, cell proliferation for MG63 cells was not evident, while data from PCR and the levels of calcification, or alkaline phosphatase activity, indicated osteogenic differentiation within the PCL-CaP constructs over time. For hMSC, the highest levels in the total calcium content were observed for the PCL-CaP constructs, thus underlining the osteoinductive properties.

Identifiants

pubmed: 37790253
doi: 10.3389/fbioe.2023.1268049
pii: 1268049
pmc: PMC10544914
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1268049

Informations de copyright

Copyright © 2023 Kühl, Gorb, Kern, Klüter, Kühl, Seekamp and Fuchs.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Références

Int J Mol Sci. 2021 Apr 12;22(8):
pubmed: 33921417
J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 2):S105-15
pubmed: 11314788
Biomater Res. 2021 Jan 26;25(1):3
pubmed: 33499957
J Clin Med. 2021 Oct 26;10(21):
pubmed: 34768485
J Bone Miner Res. 2001 Mar;16(3):457-65
pubmed: 11277263
J Biomech Eng. 1993 Nov;115(4B):534-42
pubmed: 8302037
Indian J Clin Biochem. 2014 Jul;29(3):269-78
pubmed: 24966474
Tissue Eng. 2007 Sep;13(9):2153-62
pubmed: 17516855
Int J Mol Sci. 2021 Mar 30;22(7):
pubmed: 33808303
Arch Oral Biol. 2007 Jan;52(1):64-73
pubmed: 17049335
J Exp Biol. 2019 Aug 7;222(Pt 15):
pubmed: 31315934
Tissue Eng Part C Methods. 2022 May;28(5):202-213
pubmed: 35262425
Injury. 2011 Sep;42 Suppl 2:S56-63
pubmed: 21752369
Materials (Basel). 2010 Jul 06;3(7):3867-3910
pubmed: 28883315
Bioengineering (Basel). 2018 Nov 14;5(4):
pubmed: 30441879
Neurosurg Focus. 2001 Apr 15;10(4):E1
pubmed: 16732625
J Orthop Res. 2019 Jan;37(1):60-68
pubmed: 30273977
Tissue Eng Part A. 2011 Sep;17(17-18):2199-212
pubmed: 21529248
Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110348
pubmed: 31761176
Clin Orthop Relat Res. 1981 Jun;(157):259-78
pubmed: 7018783
Nat Biotechnol. 2016 Mar;34(3):312-9
pubmed: 26878319
Clin Oral Implants Res. 2008 Dec;19(12):1276-84
pubmed: 19040443
Tissue Eng Part B Rev. 2013 Dec;19(6):485-502
pubmed: 23672709
Carbohydr Polym. 2018 Nov 1;199:304-313
pubmed: 30143133
J Cell Biochem. 2012 Sep;113(9):2806-12
pubmed: 22511358
Biotechnol Bioeng. 2002 Oct 5;80(1):73-83
pubmed: 12209788
Polymers (Basel). 2021 Aug 17;13(16):
pubmed: 34451293
Clin Oral Implants Res. 2015 Mar;26(3):271-7
pubmed: 25263527
Biomater Sci. 2021 Nov 23;9(23):7748-7798
pubmed: 34755730
Orthopedics. 2002 May;25(5 Suppl):s601-9
pubmed: 12038849
Cell Mol Life Sci. 2021 Jan;78(2):447-467
pubmed: 32699947
J Craniomaxillofac Surg. 2012 Dec;40(8):706-18
pubmed: 22297272
Acta Biomater. 2015 Nov;27:264-274
pubmed: 26318366
Bone Joint J. 2016 Jan;98-B(1 Suppl A):6-9
pubmed: 26733632
Chem Biol Interact. 2015 May 25;233:139-46
pubmed: 25824407
J Vet Res. 2018 Dec 10;62(3):385-394
pubmed: 30584621
Int J Mol Sci. 2021 Jan 19;22(2):
pubmed: 33477897
Eur J Med Res. 2020 Dec 21;25(1):70
pubmed: 33349266
Biochim Biophys Acta. 1983 Nov 8;760(3):415-20
pubmed: 6626580
Bone Res. 2013 Sep 25;1(3):216-48
pubmed: 26273505
Molecules. 2023 Jun 15;28(12):
pubmed: 37375345
JAMA Otolaryngol Head Neck Surg. 2018 Dec 1;144(12):1145-1152
pubmed: 30326042
BMC Med. 2012 Jul 26;10:81
pubmed: 22834465
Pharmaceutics. 2018 Dec 13;10(4):
pubmed: 30551594
Soft Matter. 2019 Oct 23;15(41):8272-8278
pubmed: 31553024
J Cell Biochem. 2002;85(4):737-46
pubmed: 11968014
Tissue Eng Part A. 2008 Aug;14(8):1331-40
pubmed: 18601588
Biomaterials. 2010 Nov;31(31):7960-70
pubmed: 20688388
Med Sci Monit Basic Res. 2016 Sep 26;22:95-106
pubmed: 27667570
J Biol Eng. 2017 Oct 16;11:31
pubmed: 29046717
J Orthop Trauma. 2019 Apr;33(4):203-213
pubmed: 30633080
J Biomed Mater Res A. 2010 Sep 15;94(4):1303-11
pubmed: 20694998
Mar Drugs. 2021 Mar 29;19(4):
pubmed: 33805470
J Mater Sci Mater Med. 2010 May;21(5):1649-54
pubmed: 20162336
Front Bioeng Biotechnol. 2020 Aug 06;8:776
pubmed: 32850697
Biofabrication. 2016 Oct 11;8(4):045007
pubmed: 27725338
Front Endocrinol (Lausanne). 2020 Jun 11;11:386
pubmed: 32655495
Trends Biotechnol. 2012 Oct;30(10):546-54
pubmed: 22939815
Biomater Sci. 2015 Feb;3(2):231-45
pubmed: 26218114
J Appl Biomater Funct Mater. 2014 Dec 30;12(3):145-54
pubmed: 24425377
Cell Adh Migr. 2010 Jul-Sep;4(3):377-81
pubmed: 20421733
Annu Rev Biomed Eng. 2018 Jun 4;20:119-143
pubmed: 29865872
Acta Biomater. 2018 Oct 1;79:37-59
pubmed: 30165201
Orthop Clin North Am. 1999 Oct;30(4):615-23
pubmed: 10471766
Data Brief. 2020 Aug 24;32:106223
pubmed: 32939379
Int J Mol Sci. 2017 Apr 25;18(5):
pubmed: 28441338
Acta Biomater. 2013 Sep;9(9):8037-45
pubmed: 23791671
EFORT Open Rev. 2018 May 21;3(5):173-183
pubmed: 29951254
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335
pubmed: 28629025
Biomed Res Int. 2020 Jan 30;2020:2087475
pubmed: 32083125
IET Nanobiotechnol. 2020 Sep;14(7):584-589
pubmed: 33010133

Auteurs

Julie Kühl (J)

Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany.

Stanislav Gorb (S)

Department of Functional Morphology and Biomechanics, Kiel University, Kiel, Germany.

Matthias Kern (M)

Department of Prosthodontics, Propaedeutics and Dental Material, University Medical Center, Kiel, Germany.

Tim Klüter (T)

Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany.

Sebastian Kühl (S)

Department of Electrical and Information Engineering, Kiel University, Kiel, Germany.

Andreas Seekamp (A)

Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany.

Sabine Fuchs (S)

Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany.

Classifications MeSH