Computer-aided drug repurposing to tackle antibiotic resistance based on topological data analysis.

Antibiotic resistance Antimicrobial Drug repurposing Molecular docking Topological data analysis

Journal

Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250

Informations de publication

Date de publication:
28 Sep 2023
Historique:
received: 23 04 2023
revised: 29 08 2023
accepted: 15 09 2023
medline: 4 10 2023
pubmed: 4 10 2023
entrez: 4 10 2023
Statut: aheadofprint

Résumé

The progressive emergence of antimicrobial resistance has become a global health problem in need of rapid solution. Research into new antimicrobial drugs is imperative. Drug repositioning, together with computational mathematical prediction models, could be a fast and efficient method of searching for new antibiotics. The aim of this study was to identify compounds with potential antimicrobial capacity against Escherichia coli from US Food and Drug Administration-approved drugs, and the similarity between known drug targets and E. coli proteins using a topological structure-activity data analysis model. This model has been shown to identify molecules with known antibiotic capacity, such as carbapenems and cephalosporins, as well as new molecules that could act as antimicrobials. Topological similarities were also found between E. coli proteins and proteins from different bacterial species such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and Salmonella Typhimurium, which could imply that the selected molecules have a broader spectrum than expected. These molecules include antitumor drugs, antihistamines, lipid-lowering agents, hypoglycemic agents, antidepressants, nucleotides, and nucleosides, among others. The results presented in this study prove the ability of computational mathematical prediction models to predict molecules with potential antimicrobial capacity and/or possible new pharmacological targets of interest in the design of new antibiotics and in the better understanding of antimicrobial resistance.

Identifiants

pubmed: 37793206
pii: S0010-4825(23)00961-7
doi: 10.1016/j.compbiomed.2023.107496
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107496

Informations de copyright

Copyright © 2023. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Antonio Tarín-Pelló (A)

Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115, Alfara del Patriarca, Valencia, Spain.

Beatriz Suay-García (B)

ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain.

Jaume Forés-Martos (J)

ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain.

Antonio Falcó (A)

ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain.

María-Teresa Pérez-Gracia (MT)

Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115, Alfara del Patriarca, Valencia, Spain. Electronic address: teresa@uchceu.es.

Classifications MeSH