Updates on lung neuroendocrine neoplasm classification.

artificial intelligence classification lung molecular profile neuroendocrine neoplasm

Journal

Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136

Informations de publication

Date de publication:
Jan 2024
Historique:
revised: 08 09 2023
received: 10 05 2023
accepted: 14 09 2023
pubmed: 5 10 2023
medline: 5 10 2023
entrez: 5 10 2023
Statut: ppublish

Résumé

Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.

Identifiants

pubmed: 37794655
doi: 10.1111/his.15058
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

67-85

Informations de copyright

© 2023 The Authors. Histopathology published by John Wiley & Sons Ltd.

Références

WHO Classification of Tumours Editorial Board. Thoracic tumours: WHO classification of tumours. 5th ed. Lyon, France: IARC, 2021.
Rindi G, Klimstra DS, Abedi-Ardekani B et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 2018; 31; 1770-1786.
Hung YP. Neuroendocrine tumors of the lung: updates and diagnostic pitfalls. Surg. Pathol. Clin. 2019; 12; 1055-1071.
Shah S, Gosain R, Groman A et al. Incidence and survival outcomes in patients with lung neuroendocrine neoplasms in the United States. Cancers (Basel) 2021; 13; 1753.
Wang Q, Gümüş ZH, Colarossi C et al. SCLC: epidemiology, risk factors, genetic susceptibility, molecular pathology, screening, and early detection. J. Thorac. Oncol. 2023; 18; 31-46.
WHO. WHO global report on trends in prevalence of tobacco smoking. 2018.
Andrini E, Marchese PV, De Biase D et al. Large cell neuroendocrine carcinoma of the lung: current understanding and challenges. J. Clin. Med. 2022; 11; 1461.
Jiang H, Wu Q, Zhong Y. Survival and prognosis of lung large cell neuroendocrine carcinoma. Bull. Cancer 2021; 108; 981-987.
Derks JL, Leblay N, Lantuejoul S, Dingemans AMC, Speel EJM, Fernandez-Cuesta L. New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J. Thorac. Oncol. 2018; 13; 752-766.
Shyu S, Heath JE, Burke AP. Neuroendocrine cell proliferations in lungs explanted for fibrotic interstitial lung disease and emphysema. Pathology 2018; 50; 699-702.
La Rosa S, Volante M, Uccella S et al. ACTH-producing tumourlets and carcinoids of the lung: clinico-pathologic study of 63 cases and review of the literature. Virchows Arch. 2019; 475; 587-597.
Ferolla P, Daddi N, Urbani M et al. Tumourlets, multicentric carcinoids, lymph-nodal metastases, and long-term behavior in bronchial carcinoids. J. Thorac. Oncol. 2009; 4; 383-387.
Mengoli MC, Rossi G, Cavazza A et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) syndrome and carcinoid tumors with/without NECH: a clinicopathologic, radiologic, and immunomolecular comparison study. Am. J. Surg. Pathol. 2018; 42; 646-655.
Rossi G, Cavazza A, Spagnolo P et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia syndrome. Eur. Respir. J. 2016; 47; 1829-1841.
Marchevsky AM, Wirtschafter E, Walts AE. The spectrum of changes in adults with multifocal pulmonary neuroendocrine proliferations: what is the minimum set of pathologic criteria to diagnose DIPNECH? Hum. Pathol. 2015; 46; 176-181.
Hayes AR, Luong TV, Banks J et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH): prevalence, clinicopathological characteristics and survival outcome in a cohort of 311 patients with well-differentiated lung neuroendocrine tumours. J. Neuroendocrinol. 2022; 34; e13184.
Tassi V, Scarnecchia E, Ferolla P et al. Prognostic significance of pulmonary multifocal neuroendocrine proliferation with typical carcinoid. Ann. Thorac. Surg. 2022; 113; 966-974.
Carr LL, Kern JA, Deutsch GH. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia and neuroendocrine hyperplasia of infancy. Clin. Chest Med. 2016; 37; 579-587.
Caplin ME, Baudin E, Ferolla P et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. 2015; 26; 1604-1620.
Sanguedolce F, Zanelli M, Palicelli A et al. The classification of neuroendocrine neoplasms of the lung and digestive system according to WHO, 5th edition: similarities, differences, challenges, and unmet needs. Panminerva Med. 2022; 64; 259-264.
Nagtegaal ID, Odze RD, Klimstra D et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76; 182-188.
Nicholson AG, Tsao MS, Beasley MB et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J. Thorac. Oncol. 2022; 17; 362-387.
Marchiò C, Gatti G, Massa F et al. Distinctive pathological and clinical features of lung carcinoids with high proliferation index. Virchows Arch. 2017; 471; 713-720.
Kasajima A, Konukiewitz B, Oka N et al. Clinicopathological profiling of lung carcinoids with a Ki67 index >20. Neuroendocrinology 2019; 108; 109-120.
Kasajima A, Klöppel G. Neuroendocrine tumor G3 of bronchopulmonary origin and its classification. Pathol. Int. 2022; 72; 488-495.
Rubino M, Scoazec JY, Pisa E et al. Lung carcinoids with high proliferative activity: further support for the identification of a new tumor category in the classification of lung neuroendocrine neoplasms. Lung Cancer 2020; 148; 149-158.
Hermans BCM, Derks JL, Moonen L et al. Pulmonary neuroendocrine neoplasms with well differentiated morphology and high proliferative activity: illustrated by a case series and review of the literature. Lung Cancer 2020; 150; 152-158.
Cros J, Théou-Anton N, Gounant V et al. Specific genomic alterations in high-grade pulmonary neuroendocrine tumours with carcinoid morphology. Neuroendocrinology 2021; 111; 158-169.
Quinn AM, Chaturvedi A, Nonaka D. High-grade neuroendocrine carcinoma of the lung with carcinoid morphology: a study of 12 cases. Am. J. Surg. Pathol. 2017; 41; 263-270.
Inafuku K, Yokose T, Ito H et al. Two cases of lung neuroendocrine carcinoma with carcinoid morphology. Diagn. Pathol. 2019; 14; 104.
Pelosi G, Bianchi F, Dama E et al. Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm. Virchows Arch. 2018; 472; 567-577.
Moonen L, Derks JL, Hermans BCM et al. Preoperative biopsy diagnosis in pulmonary carcinoids, a shot in the dark. J. Thorac. Oncol. 2021; 16; 610-618.
Metovic J, Barella M, Bianchi F et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch. 2021; 478; 5-19.
Derks JL, Rijnsburger N, Hermans BCM et al. Clinical-pathologic challenges in the classification of pulmonary neuroendocrine neoplasms and targets on the horizon for future clinical practice. J. Thorac. Oncol. 2021; 16; 1632-1646.
Singh S, Bergsland EK, Card CM et al. Commonwealth neuroendocrine tumour research collaboration and the North American neuroendocrine tumor society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European neuroendocrine tumor society expert consensus guidelines. J. Thorac. Oncol. 2020; 15; 1577-1598.
Fabbri A, Cossa M, Sonzogni A et al. Ki-67 labeling index of neuroendocrine tumors of the lung has a high level of correspondence between biopsy samples and surgical specimens when strict counting guidelines are applied. Virchows Arch. 2017; 470; 153-164.
Baine MK, Sinard JH, Cai G, Homer RJ. A semiquantitative scoring system may allow biopsy diagnosis of pulmonary large cell neuroendocrine carcinoma. Am. J. Clin. Pathol. 2020; 153; 165-174.
Volante M, Gatti G, Papotti M. Classification of lung neuroendocrine tumors: lights and shadows. Endocrine 2015; 50; 315-319.
Skov BG, Krasnik M, Lantuejoul S, Skov T, Brambilla E. Reclassification of neuroendocrine tumors improves the separation of carcinoids and the prediction of survival. J. Thorac. Oncol. 2008; 3; 1410-1415.
Swarts DRA, van Suylen R-J, den Bakker MA et al. Interobserver variability for the WHO classification of pulmonary carcinoids. Am. J. Surg. Pathol. 2014; 38; 1429-1436.
Travis WD, Brambilla E, Nicholson AG. Testing for neuroendocrine Immunohistochemical markers should not Be performed in poorly differentiated NSCCs in the absence of neuroendocrine morphologic features according to the 2015 WHO classification. J. Thorac. Oncol. 2016; 11; e26-e27.
Yatabe Y, Dacic S, Borczuk AC et al. Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J. Thorac. Oncol. 2019; 14; 377-407.
Rindi G, Mete O, Uccella S et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr. Pathol. 2022; 33; 115-154.
Derks JL, Dingemans A-MC, van Suylen R-J et al. Is the sum of positive neuroendocrine immunohistochemical stains useful for diagnosis of large cell neuroendocrine carcinoma (LCNEC) on biopsy specimens? Histopathology 2019; 74; 555-566.
Sturm N, Lantuéjoul S, Laverrière MH et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34betaE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum. Pathol. 2001; 32; 918-925.
Mukhopadhyay S, Dermawan JK, Lanigan CP, Farver CF. Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod. Pathol. 2019; 32; 100-109.
Rooper LM, Sharma R, Li QK, Illei PB, Westra WH. INSM1 demonstrates superior performance to the individual and combined use of Synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity. Am. J. Surg. Pathol. 2017; 41; 1561-1569.
Uccella S, La Rosa S, Volante M et al. Immunohistochemical biomarkers of gastrointestinal, pancreatic, pulmonary, and thymic neuroendocrine neoplasms. Endocr. Pathol. 2018; 29; 150-168.
Zhang W, Girard L, Zhang Y-A et al. Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl. Lung Cancer Res. 2018; 7; 32-49.
Sonkin D, Thomas A, Teicher BA. Are neuroendocrine negative small cell lung cancer and large cell neuroendocrine carcinoma with WT RB1 two faces of the same entity? Lung Cancer Manage. 2019; 8; LMT13.
Baine MK, Febres-Aldana CA, Chang JC et al. POU2F3 in SCLC: clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC. J. Thorac. Oncol. 2022; 17; 1109-1121.
La Rosa S, Marando A, Gatti G et al. Achaete-scute homolog 1 as a marker of poorly differentiated neuroendocrine carcinomas of different sites: a validation study using immunohistochemistry and quantitative real-time polymerase chain reaction on 335 cases. Hum. Pathol. 2013; 44; 1391-1399.
Altree-Tacha D, Tyrrell J, Li F. mASH1 is highly specific for neuroendocrine carcinomas: an immunohistochemical evaluation on normal and various neoplastic tissues. Arch. Pathol. Lab. Med. 2017; 141; 288-292.
Ye B, Cappel J, Findeis-Hosey J et al. hASH1 is a specific immunohistochemical marker for lung neuroendocrine tumors. Hum. Pathol. 2016; 48; 142-147.
Huang Y-H, Klingbeil O, He X-Y et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 2018; 32; 915-928.
Simbolo M, Mafficini A, Sikora KO et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J. Pathol. 2017; 241; 488-500.
Warth A, Fink L, Fisseler-Eckhoff A et al. Interobserver agreement of proliferation index (Ki-67) outperforms mitotic count in pulmonary carcinoids. Virchows Arch. 2013; 462; 507-513.
Laflamme P, Mansoori BK, Sazanova O et al. Phospho-histone-H3 immunostaining for pulmonary carcinoids: impact on clinical appraisal, interobserver correlation, and diagnostic processing efficiency. Hum. Pathol. 2020; 106; 74-81.
Jin C, Huang Y, Nasim M, Yang Y, Lee L. Gastrointestinal stromal tumors risk stratification utilizing phospho-histone H3 evaluated by manual counting and computer-assisted image analysis. Int. J. Surg. Pathol. 2019; 27; 706-712.
Saffar H, Okhovat H, Arbabsoleymani S et al. The utility of phosphohistone H3 in inter-observer variability of mitotic count in meningioma, is there any benefit? Asian Pac. J. Cancer Prev. 2021; 22; 2049-2052.
Tancredi-Cueto N, Vigil-Bastitta G, Bologna-Molina R, Beovide-Cortegoso V. The value of Phosphohistone H3 as a cell proliferation marker in oral squamous cell carcinoma. A comparative study with Ki-67 and the mitotic activity index. Med. Oral Patol. Oral Cir. Bucal 2022; 27; e444-e451.
Medani H, Elshiekh M, Naresh KN. Improving precise counting of mitotic cells in mantle cell lymphoma using phosphohistone H3 (PHH3) antibody. J. Clin. Pathol. 2021; 74; 646-649.
Pelosi G, Rindi G, Travis WD, Papotti M. Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J. Thorac. Oncol. 2014; 9; 273-284.
Swarts DRA, Rudelius M, Claessen SMH et al. Limited additive value of the Ki-67 proliferative index on patient survival in World Health Organization-classified pulmonary carcinoids. Histopathology 2017; 70; 412-422.
Oka N, Kasajima A, Konukiewitz B et al. Classification and prognostic stratification of bronchopulmonary neuroendocrine neoplasms. Neuroendocrinology 2020; 110; 393-403.
Pelosi G, Travis WD. The Ki-67 antigen in the new 2021 World Health Organization classification of lung neuroendocrine neoplasms. Pathologica 2021; 113; 377-387.
den Bakker MA, Willemsen S, Grünberg K et al. Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 2010; 56; 356-363.
Righi L, Gatti G, Volante M, Papotti M. Lung neuroendocrine tumors: pathological characteristics. J. Thorac. Dis. 2017; 9; S1442-S1447.
Ha SY, Han J, Kim W-S, Suh BS, Roh MS. Interobserver variability in diagnosing high-grade neuroendocrine carcinoma of the lung and comparing it with the morphometric analysis. Korean J. Pathol. 2012; 46; 42-47.
Sultan AS, Elgharib MA, Tavares T, Jessri M, Basile JR. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J. Oral Pathol. Med. 2020; 49; 849-856.
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat. Med. 2021; 27; 775-784.
Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. (Lond) 2020; 40; 154-166.
Yu K-H, Wang F, Berry GJ et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J. Am. Med. Inform. Assoc. 2020; 27; 757-769.
Sadhwani A, Chang H-W, Behrooz A et al. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images. Sci. Rep. 2021; 11; 16605.
Carrillo-Perez F, Morales JC, Castillo-Secilla D et al. Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion. BMC Bioinf. 2021; 22; 454.
Gonzalez D, Dietz RL, Pantanowitz L. Feasibility of a deep learning algorithm to distinguish large cell neuroendocrine from small cell lung carcinoma in cytology specimens. Cytopathology 2020; 31; 426-431.
Ilié M, Benzaquen J, Tourniaire P et al. Deep learning facilitates distinguishing histologic subtypes of pulmonary neuroendocrine tumors on digital whole-slide images. Cancers (Basel) 2022; 14; 1740.
Huang W, Nebiolo C, Esbona K, Hu R, Lloyd R. Ki67 index and mitotic count: correlation and variables affecting the accuracy of the quantification in endocrine/neuroendocrine tumors. Ann. Diagn. Pathol. 2020; 48; 151586.
Hacking SM, Sajjan S, Lee L et al. Potential pitfalls in diagnostic digital image analysis: experience with Ki-67 and PHH3 in gastrointestinal neuroendocrine tumors. Pathol. Res. Pract. 2020; 216; 152753.
Lea D, Gudlaugsson EG, Skaland I, Lillesand M, Søreide K, Søreide JA. Digital image analysis of the proliferation markers Ki67 and phosphohistone H3 in gastroenteropancreatic neuroendocrine neoplasms: accuracy of grading compared with routine manual hot spot evaluation of the Ki67 index. Appl. Immunohistochem. Mol. Morphol. 2021; 29; 499-505.
Pantelis AG, Panagopoulou PA, Lapatsanis DP. Artificial intelligence and machine learning in the diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms-a scoping review. Diagnostics (Basel) 2022; 12; 874.
Vesterinen T, Säilä J, Blom S, Pennanen M, Leijon H, Arola J. Automated assessment of Ki-67 proliferation index in neuroendocrine tumors by deep learning. APMIS 2022; 130; 11-20.
Wang H-Y, Li Z-W, Sun W et al. Automated quantification of Ki-67 index associates with pathologic grade of pulmonary neuroendocrine tumors. Chin. Med. J. (Engl.) 2019; 132; 551-561.
Liu SZ, Staats PN, Goicochea L et al. Automated quantification of Ki-67 proliferative index of excised neuroendocrine tumors of the lung. Diagn. Pathol. 2014; 9; 174.
Bulloni M, Sandrini G, Stacchiotti I et al. Automated analysis of proliferating cells spatial organisation predicts prognosis in lung neuroendocrine neoplasms. Cancers (Basel) 2021; 13; 4875.
Nofallah S, Mehta S, Mercan E et al. Machine learning techniques for mitoses classification. Comput. Med. Imaging Graph. 2021; 87; 101832.
Yousif M, van Diest PJ, Laurinavicius A et al. Artificial intelligence applied to breast pathology. Virchows Arch. 2022; 480; 191-209.
Ahmed AA, Abouzid M, Kaczmarek E. Deep learning approaches in histopathology. Cancers (Basel). 2022; 14; 5264.
Volante M, Mete O, Pelosi G, Roden AC, Speel EJM, Uccella S. Molecular pathology of well-differentiated pulmonary and thymic neuroendocrine tumors: what do pathologists need to know? Endocr. Pathol. 2021; 32; 154-168.
James G, Witten D, Hastie T et al. An introduction to statistical learning. Vol. 103. New York, NY: Springer New York, 2013.
Fernandez-Cuesta L, Peifer M, Lu X et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat. Commun. 2014; 5; 3518.
Centonze G, Biganzoli D, Prinzi N et al. Beyond traditional morphological characterization of lung neuroendocrine neoplasms: in silico study of next-generation sequencing mutations analysis across the four world health organization defined groups. Cancers (Basel) 2020; 12; 2753.
Laddha SV, da Silva EM, Robzyk K et al. Integrative genomic characterization identifies molecular subtypes of lung carcinoids. Cancer Res. 2019; 79; 4339-4347.
Veschi S, Lattanzio R, Aceto GM et al. Alterations of MEN1 and E-cadherin/β-catenin complex in sporadic pulmonary carcinoids. Int. J. Oncol. 2012; 41; 1221-1228.
Debelenko LV, Brambilla E, Agarwal SK et al. Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum. Mol. Genet. 1997; 6; 2285-2290.
Rekhtman N, Pietanza MC, Hellmann MD et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin. Cancer Res. 2016; 22; 3618-3629.
George J, Walter V, Peifer M et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat. Commun. 2018; 9; 1048.
Pelosi G, Bianchi F, Hofman P et al. Recent advances in the molecular landscape of lung neuroendocrine tumors. Expert Rev. Mol. Diagn. 2019; 19; 281-297.
Baine MK, Hsieh M-S, Lai WV et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 2020; 15; 1823-1835.
Gay CM, Stewart CA, Park EM et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 2021; 39; 346-360.e7.
Giaccone G, He Y. Current knowledge of small cell lung cancer transformation from non-small cell lung cancer. Semin. Cancer Biol. 2023; 94; 1-10.
Sivakumar S, Moore JA, Montesion M et al. Integrative analysis of a large real-world cohort of small cell lung cancer identifies distinct genetic subtypes and insights into histologic transformation. Cancer Discov. 2023; 13; 1572-1591.
Alcala N, Leblay N, Gabriel AAG et al. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat. Commun. 2019; 10; 3407.
Simbolo M, Barbi S, Fassan M et al. Gene expression profiling of lung atypical carcinoids and large cell neuroendocrine carcinomas identifies three transcriptomic subtypes with specific genomic alterations. J. Thorac. Oncol. 2019; 14; 1651-1661.
Rekhtman N, Montecalvo J, Chang JC et al. SMARCA4-deficient thoracic Sarcomatoid tumors represent primarily smoking-related undifferentiated carcinomas rather than primary thoracic sarcomas. J. Thorac. Oncol. 2020; 15; 231-247.
Hung YP, Chen AL, Taylor MS et al. Thoracic nuclear protein in testis (NUT) carcinoma: expanded pathological spectrum with expression of thyroid transcription factor-1 and neuroendocrine markers. Histopathology 2021; 78; 896-904.
Moonen L, Derks J, Dingemans A-M, Speel EJ. Orthopedia homeobox (OTP) in pulmonary neuroendocrine tumors: the diagnostic value and possible molecular interactions. Cancers (Basel) 2019; 11; 1508.
Rekhtman N, Desmeules P, Litvak AM et al. Stage IV lung carcinoids: spectrum and evolution of proliferation rate, focusing on variants with elevated proliferation indices. Mod. Pathol. 2019; 32; 1106-1122.
Swarts DRA, Scarpa A, Corbo V et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J. Clin. Endocrinol. Metab. 2014; 99; E374-E378.
Swarts DRA, Henfling MER, Van Neste L et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin. Cancer Res. 2013; 19; 2197-2207.
Papaxoinis G, Nonaka D, O'Brien C et al. Prognostic significance of CD44 and orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours. Endocr. Pathol. 2017; 28; 60-70.
Swarts DR, Van Neste L, Henfling ME et al. An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis 2013; 34; 2726-2737.
Rudin CM, Poirier JT, Byers LA et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 2019; 19; 289-297.
Yao J, Bergsland E, Aggarwal R et al. DLL3 as an emerging target for the treatment of neuroendocrine neoplasms. Oncologist 2022; 27; 940-951.
Matsuo K, Taniguchi K, Hamamoto H et al. Delta-like canonical Notch ligand 3 as a potential therapeutic target in malignancies: a brief overview. Cancer Sci. 2021; 112; 2984-2992.
Poirier JT, George J, Owonikoko TK et al. New approaches to SCLC therapy: from the laboratory to the clinic. J. Thorac. Oncol. 2020; 15; 520-540.
Owonikoko TK, Dwivedi B, Chen Z et al. YAP1 expression in SCLC defines a distinct subtype with T-cell-inflamed phenotype. J. Thorac. Oncol. 2021; 16; 464-476.
Longo V, Catino A, Montrone M et al. What are the biomarkers for immunotherapy in SCLC? Int. J. Mol. Sci. 2021; 22; 11123.
Horn L, Mansfield AS, Szczęsna A et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 2018; 379; 2220-2229.
Keogh A, Finn S, Radonic T. Emerging biomarkers and the changing landscape of small cell lung cancer. Cancers (Basel) 2022; 14; 3772.
Thomas PL, Groves SM, Zhang Y-K et al. Beyond programmed death-ligand 1: B7-H6 emerges as a potential immunotherapy target in SCLC. J. Thorac. Oncol. 2021; 16; 1211-1223.
Dora D, Rivard C, Yu H et al. Protein expression of immune checkpoints STING and MHCII in small cell lung cancer. Cancer Immunol. Immunother. 2023; 72; 561-578.
Lantuejoul S, Fernandez-Cuesta L, Damiola F, Girard N, McLeer A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl. Lung Cancer Res. 2020; 9; 2233-2244.
Derks JL, Leblay N, Thunnissen E et al. Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome. Clin. Cancer Res. 2018; 24; 33-42.
Febres-Aldana CA, Chang JC, Ptashkin R et al. Rb tumor suppressor in small cell lung cancer: combined genomic and IHC analysis with a description of a distinct Rb-proficient subset. Clin. Cancer Res. 2022; 28; 4702-4713.
Ferrara MG, Stefani A, Simbolo M et al. Large cell neuro-endocrine carcinoma of the lung: current treatment options and potential future opportunities. Front. Oncol. 2021; 11; 650293.
Akhoundova D, Haberecker M, Fritsch R et al. Targeting ALK in neuroendocrine tumors of the lung. Front. Oncol. 2022; 12; 911294.

Auteurs

Giulia Vocino Trucco (G)

Department of Medical Sciences, University of Turin, Turin, Italy.

Luisella Righi (L)

Department of Oncology, University of Turin, Turin, Italy.

Marco Volante (M)

Department of Oncology, University of Turin, Turin, Italy.

Mauro Papotti (M)

Department of Oncology, University of Turin, Turin, Italy.

Classifications MeSH