Arbuscular mycorrhizal fungi benefit plants in response to major global change factors.

arbuscular mycorrhizal fungi drought elevated CO2 global change meta-analysis nitrogen addition plant performance warming

Journal

Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949

Informations de publication

Date de publication:
Dec 2023
Historique:
revised: 14 09 2023
received: 11 04 2023
accepted: 15 09 2023
pubmed: 5 10 2023
medline: 5 10 2023
entrez: 5 10 2023
Statut: ppublish

Résumé

Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO

Identifiants

pubmed: 37794719
doi: 10.1111/ele.14320
doi:

Types de publication

Letter

Langues

eng

Sous-ensembles de citation

IM

Pagination

2087-2097

Subventions

Organisme : European Joint Programme - Soils project 'Symbiotic Solutions for Healthy Agricultural Landscapes (SOIL-HEAL)', national support for which came from the German Federal Ministry of Education and Research
ID : 031B1266
Organisme : Rising Star Fellowship program of the Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin

Informations de copyright

© 2023 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

Références

Alberton, O., Kuyper, T.W. & Gorissen, A. (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytologist, 167, 859-868.
Aria, M. & Cuccurullo, C. (2017) Bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11, 959-975.
Augé, R.M. (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
Chagnon, P.L., Bradley, R.L., Maherali, H. & Klironomos, J.N. (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18, 484-491.
Chamberlain, S.A., Hovick, S.M., Dibble, C.J., Rasmussen, N.L., Van Allen, B.G., Maitner, B.S. et al. (2012) Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecology Letters, 15, 627-636.
Chaudhary, V.B., Holland, E.P., Charman-Anderson, S., Guzman, A., Bell-Dereske, L., Cheeke, T.E. et al. (2022) What are mycorrhizal traits? Trends in Ecology & Evolution, 37, 573-581.
Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G. et al. (2019) Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 29, 325-339.
Drigo, B., Pijl, A.S., Duyts, H., Kielak, A., Gamper, H.A., Houtekamer, M.J. et al. (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107, 10938-10942.
Duan, X.G., Neuman, D.S., Reiber, J.M., Green, C.D., Saxton, A.M. & Auge, R.M. (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany, 47, 1541-1550.
Duarte, A.G. & Maherali, H. (2022) A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecology and Evolution, 12, e8518.
Egger, M., Smith, G.D., Schneider, M. & Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. Bmj-British Medical Journal, 315, 629-634.
Gosling, P., Jones, J. & Bending, G.D. (2016) Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Mycorrhiza, 26, 77-83.
Grafen, A. (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society B-Biological Sciences, 326, 119-157.
Gusewell, S. (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
Hause, B. (2019) Elevated CO2-induced improvement of mycorrhization - which players lie in-between? New Phytologist, 224, 5-7.
Hawkes, C.V., Hartley, I.P., Ineson, P. & Fitter, A.H. (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 14, 1181-1190.
Hedges, L.V., Gurevitch, J. & Curtis, P.S. (1999) The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M. et al. (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences of the United States of America, 112, 12764-12769.
Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T. et al. (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13, 394-407.
Horsch, C.C.A., Antunes, P.M. & Kallenbach, C.M. (2023) Arbuscular mycorrhizal fungal communities with contrasting life-history traits influence host nutrient acquisition. Mycorrhiza, 33, 1-14.
Houghton, R.A., Hall, F. & Goetz, S.J. (2009) Importance of biomass in the global carbon cycle. Journal of Geophysical Research-Biogeosciences, 114, G00E03.
IPCC. (2021) Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Jansa, J., Smith, F.A. & Smith, S.E. (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177, 779-789.
Jayne, B. & Quigley, M. (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24, 109-119.
Johnson, N.C. (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
Johnson, N.C., Graham, J.H. & Smith, F.A. (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135, 575-586.
Johnson, N.C., Wilson, G.W.T., Bowker, M.A., Wilson, J.A. & Miller, R.M. (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 107, 2093-2098.
Kivlin, S.N., Emery, S.M. & Rudgers, J.A. (2013) Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 1445-1457.
Kivlin, S.N., Hawkes, C.V. & Treseder, K.K. (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 43, 2294-2303.
Koch, A.M., Antunes, P.M., Maherali, H., Hart, M.M. & Klironomos, J.N. (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist, 214, 1330-1337.
Koricheva, J. & Gurevitch, J. (2014) Uses and misuses of meta-analysis in plant ecology. Journal of Ecology, 102, 828-844.
Koricheva, J., Gurevitch, J. & Mengersen, K. (2013) Handbook of meta-analysis in ecology and evolution. Princeton, NJ: Princeton University Press.
Kubikova, E., Moore, J.L., Ownley, B.H., Mullen, M.D. & Auge, R.M. (2001) Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. Journal of Plant Physiology, 158, 1227-1230.
Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for r. Methods in Ecology and Evolution, 7, 323-330.
Lanfranco, L., Fiorilli, V. & Gutjahr, C. (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031-1046.
Li, J.Q., Meng, B., Chai, H., Yang, X.C., Song, W.Z., Li, S.X. et al. (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499.
Lorber, A. (1986) Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry, 58(6), 1167-1172. https://doi.org/10.1021/ac00297a042
Luo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A.C., Hartwig, U. et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54, 731-739.
Maherali, H. & Klironomos, J.N. (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748.
Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M.G., Field, C.B. et al. (2020) Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B-Biological Sciences, 375, 20190104.
Marro, N., Grilli, G., Soteras, F., Caccia, M., Longo, S., Cofre, N. et al. (2022) The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytologist, 235, 320-332.
Martin, F.M., Uroz, S. & Barker, D.G. (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 356, eaad4501.
Mei, L.L., Yang, X., Zhang, S.Q., Zhang, T. & Guo, J.X. (2019) Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of the Total Environment, 686, 1129-1139.
Michonneau, F., Brown, J.W. & Winter, D.J. (2016) Rotl: an R package to interact with the open tree of life data. Methods in Ecology and Evolution, 7, 1476-1481.
Millar, N.S. & Bennett, A.E. (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625-641.
Moulin, T.C. & Amaral, O.B. (2020) Using collaboration networks to identify authorship dependence in meta-analysis results. Research Synthesis Methods, 11, 655-668.
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
Parvin, S., Van Geel, M., Yeasmin, T., Verbruggen, E. & Honnay, O. (2020) Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 30, 431-444.
Powell, J.R., Parrent, J.L., Hart, M.M., Klironomos, J.N., Rillig, M.C. & Maherali, H. (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society B-Biological Sciences, 276, 4237-4245.
Powell, J.R. & Rillig, M.C. (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059-1075.
R Development Core Team. (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Reich, P.B., Bermudez, R., Montgomery, R.A., Rich, R.L., Rice, K.E., Hobbie, S.E. et al. (2022) Even modest climate change may lead to major transitions in boreal forests. Nature, 608, 540.
Reich, P.B., Hobbie, S.E., Lee, T., Ellsworth, D.S., West, J.B., Tilman, D. et al. (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925.
Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert, S., Wulf, A. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
Rosenberg, M.S. (2005) The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59, 464-468.
Rudgers, J.A., Miller, T.E.X., Ziegler, S.M. & Craven, K.D. (2012) There are many ways to be a mutualist: Endophytic fungus reduces plant survival but increases population growth. Ecology, 93, 565-574.
Sale, V., Palenzuela, J., Azcon-Aguilar, C., Sanchez-Castro, I., da Silva, G.A., Seitz, B. et al. (2021) Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza, 31, 559-576.
Shi, S., Luo, X., Dong, X., Qiu, Y., Xu, C. & He, X. (2021) Arbuscular mycorrhization enhances nitrogen, phosphorus and potassium accumulation in Vicia faba by modulating soil nutrient balance under elevated CO2. Journal of Fungi, 7, 361.
Smith, S.E. & Read, D.J. (2008) Mycorrhizal symbiosis, 3rd edition. New York, NY: Academic Press.
Speißer, B., Wilschut, R.A. & Van Kleunen, M. (2022) Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities. Nature Communications, 13, 7811.
Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S. et al. (2019) Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9, 684.
Terrer, C., Vicca, S., Stocker, B.D., Hungate, B.A., Phillips, R.P., Reich, P.B. et al. (2018) Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 217, 507-522.
Vályi, K., Mardhiah, U., Rillig, M.C. & Hempel, S. (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME Journal, 10, 2341-2351.
Viechtbauer, W. (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1-48.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
Yang, G.W., Roy, J., Veresoglou, S.D. & Rillig, M.C. (2021) Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist, 229, 2945-2956.
Yang, G.W., Ryo, M., Roy, J., Lammel, D.R., Ballhausen, M.B., Jing, X. et al. (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications, 13, 4260.
Yang, H., Zhang, Q., Koide, R.T., Hoeksema, J.D., Tang, J., Bian, X. et al. (2017) Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. Journal of Ecology, 105, 219-228.
Yooyongwech, S., Phaukinsang, N., Cha-um, S. & Supaibulwatana, K. (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69, 285-293.
Zhan, S.X., Wang, Y., Zhu, Z.C., Li, W.H. & Bai, Y.F. (2017) Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environmental and Experimental Botany, 134, 21-32.
Zhang, L., Shi, N., Fan, J.Q., Wang, F., George, T.S. & Feng, G. (2018) Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environmental Microbiology, 20, 2639-2651.
Zhang, L., Zhou, J.C., George, T.S., Limpens, E. & Feng, G. (2022) Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27, 402-411.
Zhou, Y.H., Ge, S.B., Jin, L.J., Yao, K.Q., Wang, Y., Wu, X.D. et al. (2019) A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 224, 106-116.

Auteurs

Bo Tang (B)

Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.

Jing Man (J)

Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.

Anika Lehmann (A)

Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.

Matthias C Rillig (MC)

Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.

Classifications MeSH