Effect of Intestinal Flora on Hyperuricemia-Induced Chronic Kidney Injury in Type 2 Diabetic Patients and the Therapeutic Mechanism of New Anti-Diabetic Prescription Medications.
T2D
diabetic kidney disease
hyperuricemia
intestinal flora
kidney injury
type 2 diabetes
Journal
Diabetes, metabolic syndrome and obesity : targets and therapy
ISSN: 1178-7007
Titre abrégé: Diabetes Metab Syndr Obes
Pays: New Zealand
ID NLM: 101515585
Informations de publication
Date de publication:
2023
2023
Historique:
received:
27
07
2023
accepted:
22
09
2023
medline:
5
10
2023
pubmed:
5
10
2023
entrez:
5
10
2023
Statut:
epublish
Résumé
This article examined the current research on hyperuricemia (HUA) exacerbating diabetic kidney damage and novel anti-diabetic medications for treating these people. Hyperuricemia and type 2 diabetes (T2D), both of which are frequent metabolic disorders, are closely connected. Recent studies have shown that hyperuricemia can increase kidney injury in T2D patients by aggravating insulin resistance, by activating the renin-angiotensin-aldosterone system (RAAS), and by stimulating inflammatory factors, and the diversity, distribution, and metabolites of intestinal flora. Considering this, there are just a few of the research examining the effect of hyperuricemia on diabetic kidney injury via intestinal flora. Through the gut-kidney axis, intestinal flora primarily influences renal function. The primary mechanism is that variations in diversity, distribution, and metabolites of intestinal flora led to alterations in metabolites (such as short-chain fatty acids, Indoxyl sulfate and p-cresol sulfate, Trimethylamine N-oxide TMAO). This article reviewed the research and investigates the association between hyperuricemia and T2D, as well as the influence of hyperuricemia on diabetic kidney injury via intestinal flora. In addition, the current novel antidiabetic drugs are discussed, and their characteristics and mechanisms of action are reviewed. These novel antidiabetic drugs include SGLT2 inhibitors, GLP-1 receptor agonists, DDP-4 inhibitors, glucokinase (GK) enzyme activators (GK agonists), and mineralocorticoid receptor antagonists (MRA). Recent studies suggest that these new anti-diabetic medications may have a therapeutic effect on hyperuricemia-induced kidney impairment in diabetes patients via various mechanisms. Some of these medications may reduce blood uric acid levels, while others may improve kidney function by attenuating the overstimulation of RAAS or by decreasing insulin resistance and inflammation in the kidneys. These novel antidiabetic medicines may have a multifaceted approach to treating hyperuricemia-induced kidney impairment in diabetic patients; nevertheless, additional study is required to establish their efficacy and comprehend their specific mechanisms.
Identifiants
pubmed: 37794899
doi: 10.2147/DMSO.S429068
pii: 429068
pmc: PMC10547008
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
3029-3044Informations de copyright
© 2023 Yan et al.
Déclaration de conflit d'intérêts
The authors declare there is no conflict of interest.
Références
J Diabetes Complications. 2016 Sep-Oct;30(7):1300-7
pubmed: 27324705
Am J Physiol Renal Physiol. 2012 Mar 15;302(6):F730-41
pubmed: 22189943
Prim Care Diabetes. 2021 Dec;15(6):1002-1006
pubmed: 34217642
Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F173-F185
pubmed: 30427222
Curr Diabetes Rev. 2010 Jul;6(4):191-200
pubmed: 20380625
World J Diabetes. 2020 Jul 15;11(7):269-279
pubmed: 32843930
Diabetes Care. 2009 Sep;32(9):1737-42
pubmed: 19549729
Medicina (Kaunas). 2019 May 31;55(6):
pubmed: 31159279
Curr Pharm Des. 2005;11(32):4145-51
pubmed: 16375736
Front Microbiol. 2018 Sep 19;9:2233
pubmed: 30283432
Curr Opin Nephrol Hypertens. 2014 Jan;23(1):54-60
pubmed: 24257158
Diabetes Metab. 2017 Apr;43 Suppl 1:2S20-2S27
pubmed: 28431667
Lett Appl Microbiol. 2021 Jun;72(6):636-668
pubmed: 32472555
Diabetes Obes Metab. 2018 Feb;20(2):458-462
pubmed: 28846182
Biomed Pharmacother. 2020 May;125:109914
pubmed: 32035395
Biochem Biophys Res Commun. 2017 Nov 18;493(2):964-970
pubmed: 28942145
Front Pharmacol. 2021 Nov 24;12:757508
pubmed: 34899312
Gut. 2020 Aug;69(8):1510-1519
pubmed: 32409589
Lancet Diabetes Endocrinol. 2019 Nov;7(11):845-854
pubmed: 31495651
Biochem Biophys Res Commun. 2018 Jan 8;495(2):2071-2077
pubmed: 29247650
Biomed Res Int. 2020 Jun 26;2020:5817348
pubmed: 32685502
Diab Vasc Dis Res. 2014 Sep;11(5):306-23
pubmed: 25116004
Hypertension. 2003 Jun;41(6):1287-93
pubmed: 12743010
J Diabetes Res. 2021 Jun 17;2021:9973862
pubmed: 34239940
Curr Cardiol Rep. 2021 May 7;23(6):59
pubmed: 33961133
Nat Rev Nephrol. 2017 Oct;13(10):605-628
pubmed: 28869249
Front Pharmacol. 2022 Aug 12;13:929262
pubmed: 36034781
EMBO J. 2013 Aug 28;32(17):2336-47
pubmed: 23921551
J Mol Endocrinol. 2017 Jul;59(1):R1-R10
pubmed: 28420715
Curr Opin Rheumatol. 2013 Mar;25(2):210-6
pubmed: 23370374
BMC Nephrol. 2017 Jan 17;18(1):27
pubmed: 28095822
Gut Microbes. 2016 May 3;7(3):189-200
pubmed: 26963409
Circ Res. 2015 Jan 30;116(3):448-55
pubmed: 25599331
Adv Nutr. 2021 Jul 30;12(4):1286-1304
pubmed: 33751019
PLoS One. 2021 Feb 19;16(2):e0244689
pubmed: 33606705
Nature. 2012 Oct 4;490(7418):55-60
pubmed: 23023125
J Am Coll Cardiol. 2010 Feb 16;55(7):671-9
pubmed: 20170794
EXCLI J. 2021 Feb 11;20:301-319
pubmed: 33746664
Bioengineered. 2021 Dec;12(1):7263-7275
pubmed: 34590550
Biochem Biophys Res Commun. 2018 Sep 18;503(4):3248-3255
pubmed: 30166062
Best Pract Res Clin Endocrinol Metab. 2009 Aug;23(4):479-86
pubmed: 19748065
EBioMedicine. 2020 Jan;51:102590
pubmed: 31901868
J Am Heart Assoc. 2017 Sep 4;6(9):
pubmed: 28871042
Nutrients. 2021 Apr 21;13(5):
pubmed: 33919016
J Am Soc Nephrol. 2008 Dec;19(12):2407-13
pubmed: 18799720
Metabolism. 2022 Feb;127:154937
pubmed: 34808144
Acta Biomater. 2019 Dec;100:52-60
pubmed: 31606530
Pharmacol Res. 2021 Oct;172:105859
pubmed: 34461222
Kidney Int. 2005 May;67(5):1739-42
pubmed: 15840020
Diabetes Care. 2012 Jan;35(1):99-104
pubmed: 22028277
Ther Adv Chronic Dis. 2021 Jun 22;12:20406223211026993
pubmed: 34221308
Intern Emerg Med. 2012 Feb;7(1):5-8
pubmed: 21842242
Sci Rep. 2016 Feb 08;6:20602
pubmed: 26852926
Contrib Nephrol. 2005;147:132-148
pubmed: 15604613
Nat Rev Gastroenterol Hepatol. 2018 Nov;15(11):671-682
pubmed: 29844585
Clin Chim Acta. 2018 Sep;484:150-163
pubmed: 29803897
Kidney Int. 2019 Jun;95(6):1373-1388
pubmed: 30979564
Nat Rev Nephrol. 2014 Feb;10(2):77-87
pubmed: 24296623
Circulation. 2008 May 6;117(18):2340-50
pubmed: 18427132
Int J Mol Sci. 2020 Sep 02;21(17):
pubmed: 32887215
Biochem J. 2008 Aug 15;414(1):1-18
pubmed: 18651836
Clin Exp Pharmacol Physiol. 2018 Jun;45(6):499-506
pubmed: 29266345
Circulation. 2019 Mar 12;139(11):1384-1395
pubmed: 30586757
Oxid Med Cell Longev. 2015;2015:535686
pubmed: 25918583
Cardiorenal Med. 2013 Oct;3(3):208-220
pubmed: 24454316
Biomed Res Int. 2017;2017:4391920
pubmed: 28116308
Front Physiol. 2021 Jun 16;12:682482
pubmed: 34220546
Trends Endocrinol Metab. 2017 Feb;28(2):121-130
pubmed: 27825547
Methods. 2015 Mar;75:128-32
pubmed: 25542097
Br J Clin Pharmacol. 2022 Aug;88(8):3627-3637
pubmed: 35384008
J Nephrol. 2020 Oct;33(5):995-999
pubmed: 32651849
Nat Rev Gastroenterol Hepatol. 2021 Dec;18(12):885-902
pubmed: 34580480
Am J Epidemiol. 2012 Jul 15;176(2):108-16
pubmed: 22753829