Expanded Hemodialysis ameliorates uremia-induced impairment of vasculoprotective KLF2 and concomitant proinflammatory priming of endothelial cells through an ERK/AP1/cFOS-dependent mechanism.

Krüppel-like factor 2 (KLF2) and expanded hemodialysis therapy (HDx) cardiovascular disease (CVD) chronic kidney disease (CKD) cytokine signaling end-stage renal disease (ESRD) systemic inflammation uremic toxins

Journal

Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960

Informations de publication

Date de publication:
2023
Historique:
received: 20 04 2023
accepted: 31 08 2023
medline: 1 11 2023
pubmed: 5 10 2023
entrez: 5 10 2023
Statut: epublish

Résumé

Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.

Identifiants

pubmed: 37795100
doi: 10.3389/fimmu.2023.1209464
pmc: PMC10546407
doi:

Substances chimiques

MCO 56369-20-1
Transcription Factors 0
KLF2 protein, human 0
Kruppel-Like Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1209464

Informations de copyright

Copyright © 2023 Zhao, Wu, Gyamfi, Wang, Luecht, Pfefferkorn, Ashraf, Kamhieh-Milz, Witowski, Dragun, Budde, Schindler, Zickler, Moll and Catar.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Lancet. 2013 Jul 27;382(9889):353-62
pubmed: 23727164
Am J Nephrol. 2021;52(2):98-107
pubmed: 33752206
Stem Cells Dev. 2015 Oct 1;24(19):2269-79
pubmed: 26192403
Curr Opin Cell Biol. 1997 Apr;9(2):240-6
pubmed: 9069263
Life Sci. 2012 Apr 9;90(13-14):525-30
pubmed: 22326498
Eur J Clin Invest. 2015 Feb;45(2):160-9
pubmed: 25496217
Transplantation. 2010 Jul 27;90(2):142-9
pubmed: 20606606
Clin Kidney J. 2023 Feb 20;16(7):1071-1080
pubmed: 37398691
Arterioscler Thromb Vasc Biol. 2007 Mar;27(3):532-9
pubmed: 17194892
Kidney Int. 2006 Aug;70(4):757-64
pubmed: 16788687
Cell Signal. 2012 Apr;24(4):879-88
pubmed: 22182511
Biochim Biophys Acta. 2004 Nov 5;1690(3):231-7
pubmed: 15511630
Nephrol Dial Transplant. 2016 Oct;31(10):1706-12
pubmed: 27445317
Int J Mol Sci. 2022 Apr 02;23(7):
pubmed: 35409344
Circ J. 2013;77(5):1326-36
pubmed: 23337206
Front Immunol. 2022 Feb 04;13:821681
pubmed: 35185912
J Hypertens. 2005 Jun;23(6):1191-202
pubmed: 15894895
J Mol Cell Biol. 2017 Oct 1;9(5):352-363
pubmed: 28992202
Signal Transduct Target Ther. 2021 Jul 12;6(1):266
pubmed: 34253708
Am J Physiol Renal Physiol. 2017 Feb 1;312(2):F259-F265
pubmed: 27852611
Kidney Int. 2015 May;87(5):996-1008
pubmed: 25651366
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5682-7
pubmed: 16581909
J Virol. 2011 Aug;85(15):7766-74
pubmed: 21632768
Biochemistry. 2005 Apr 26;44(16):6276-85
pubmed: 15835916
PLoS One. 2017 Jan 13;12(1):e0169024
pubmed: 28085888
Artif Organs. 2017 Sep;41(9):803-809
pubmed: 28524237
Cardiovasc Res. 2008 Apr 1;78(1):175-84
pubmed: 18192240
Kidney Blood Press Res. 2011;34(4):284-90
pubmed: 21691132
Protein Cell. 2011 Nov;2(11):889-98
pubmed: 22180088
Circulation. 2005 Aug 2;112(5):720-6
pubmed: 16043642
Mol Ther Methods Clin Dev. 2021 Feb 04;21:681-692
pubmed: 34141823
Int J Mol Sci. 2017 Nov 10;18(11):
pubmed: 29125549
J Am Soc Nephrol. 2017 Apr;28(4):1188-1199
pubmed: 27837150
J Am Soc Nephrol. 2018 Oct;29(10):2529-2545
pubmed: 30143559
Blood Purif. 2017;44(2):I-VIII
pubmed: 28486230
BMJ. 2020 Oct 21;371:m3734
pubmed: 33087345
Stem Cells. 2012 Jul;30(7):1565-74
pubmed: 22522999
Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1952-9
pubmed: 20651277
J Card Fail. 2007 Mar;13(2):155-62
pubmed: 17395057
Nephrol Dial Transplant. 2017 Jan 1;32(1):165-172
pubmed: 27587605
Lancet. 2013 Jul 13;382(9887):158-69
pubmed: 23727165
Circ Res. 2005 Mar 18;96(5):e48-57
pubmed: 15718498
Kidney Int. 1999 Feb;55(2):648-58
pubmed: 9987089
Mol Cancer. 2018 Sep 28;17(1):141
pubmed: 30266084
J Am Heart Assoc. 2017 Nov 30;6(12):
pubmed: 29191808
Front Immunol. 2021 Nov 11;12:774052
pubmed: 34858433
J Am Heart Assoc. 2018 Jan 4;7(1):
pubmed: 29301761
Circulation. 2007 Mar 13;115(10):1285-95
pubmed: 17353456
Stem Cells. 2014 Sep;32(9):2430-42
pubmed: 24805247
Kidney Int. 2015 Feb;87(2):382-95
pubmed: 25185079
Postgrad Med. 2015 Jun;127(5):446-54
pubmed: 25927862
J Am Soc Nephrol. 2011 Feb;22(2):207-15
pubmed: 20634295
Circulation. 2021 Mar 16;143(11):1157-1172
pubmed: 33720773
Biochem Biophys Res Commun. 2018 Jan 1;495(1):20-26
pubmed: 29079188
Circ Res. 2021 Aug 6;129(4):e87-e100
pubmed: 34157851
Lancet. 2020 Feb 29;395(10225):709-733
pubmed: 32061315
Am J Physiol Renal Physiol. 2017 Mar 1;312(3):F398-F406
pubmed: 27927649
Nephrol Dial Transplant. 2018 Apr 1;33(4):574-585
pubmed: 29228352
Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii22-iii27
pubmed: 30281130
J Biol Chem. 2005 Jul 22;280(29):26714-9
pubmed: 15878865
J Exp Med. 2004 May 17;199(10):1305-15
pubmed: 15136591
Front Cardiovasc Med. 2018 Feb 05;5:6
pubmed: 29459900
Biomedicines. 2022 Jan 24;10(2):
pubmed: 35203463
Kidney Int. 2013 Dec;84(6):1119-28
pubmed: 23760290
J Biol Chem. 2005 Jun 17;280(24):23371-9
pubmed: 15834135
Am J Pathol. 2013 May;182(5):1696-704
pubmed: 23499374
Am J Pathol. 2005 Jan;166(1):323-39
pubmed: 15632024
Nat Rev Nephrol. 2018 Jun;14(6):394-410
pubmed: 29730670
Circ Res. 2012 Feb 17;110(4):560-8
pubmed: 22267843
Biochemistry (Mosc). 2020 Jan;85(1):54-67
pubmed: 32079517
Exp Cell Res. 1999 Nov 25;253(1):180-5
pubmed: 10579922
Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii41-iii47
pubmed: 30281134
Biol Chem. 2004 Aug;385(8):723-9
pubmed: 15449708
Contrib Nephrol. 2017;190:124-133
pubmed: 28535525
Am J Pathol. 2016 Aug;186(8):2021-2031
pubmed: 27317905
Cells. 2021 Apr 15;10(4):
pubmed: 33920990

Auteurs

Hongfan Zhao (H)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Dashan Wu (D)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Michael Adu Gyamfi (MA)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Pinchao Wang (P)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Christian Luecht (C)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Anna Maria Pfefferkorn (AM)

Department of Surgery, at Charité Universitätsmedizin Berlin, Berlin, Germany.

Muhammad Imtiaz Ashraf (MI)

Department of Surgery, at Charité Universitätsmedizin Berlin, Berlin, Germany.

Julian Kamhieh-Milz (J)

Institute of Transfusion Medicine, at Charité Universitätsmedizin Berlin, Berlin, Germany.

Janusz Witowski (J)

Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.

Duska Dragun (D)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Klemens Budde (K)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Ralf Schindler (R)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Daniel Zickler (D)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Guido Moll (G)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), at Charité Universitätsmedizin Berlin, Berlin, Germany.

Rusan Catar (R)

Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH