Differential diagnosis of fever and rash cases negative for measles and rubella to complement surveillance activities.
Child
Humans
Adolescent
Young Adult
Adult
Diagnosis, Differential
Epstein-Barr Virus Infections
/ diagnosis
Antibodies, Viral
Immunoglobulin M
Herpesvirus 4, Human
Measles
/ diagnosis
Rubella
/ diagnosis
Measles virus
/ genetics
Enterovirus
Exanthema
Fever
Enterovirus Infections
/ diagnosis
Herpesvirus 6, Human
/ genetics
Adenoviruses, Human
differential diagnosis
fever and rash
measles
parvovirus B19
rubella
surveillance
Journal
Journal of medical virology
ISSN: 1096-9071
Titre abrégé: J Med Virol
Pays: United States
ID NLM: 7705876
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
09
08
2023
received:
08
05
2023
accepted:
21
09
2023
medline:
1
11
2023
pubmed:
5
10
2023
entrez:
5
10
2023
Statut:
ppublish
Résumé
In the quest to eliminate measles virus (MV) and rubella virus (Ruv), every suspected case must be properly identified and diagnosed. Since 2017, in Milan (Italy), a total of 978 measles and rubella suspected cases (fever and rash) were investigated and 310 were not laboratory confirmed (discarded cases). To improve surveillance activities, we investigated the presence in discarded cases of 8 other viral pathogens commonly associated with rash: human herpesvirus 6 (HHV-6) and 7 (HHV-7), parvovirus B19 (B19V), enterovirus (EV), Epstein-Barr virus (EBV), human adenovirus (HAdV), cytomegalovirus (HCMV), and SARS-CoV-2. Differential diagnosis was carried out on 289 discarded cases by multiplex real-time PCR assays. At least one pathogen was detected in 188 cases (65.1%) with HHV-7 being the most frequently detected virus. No difference in the number of detected infections overtime was observed and infections were identified in all age groups. As expected, most HHV-6, EV, HAdV, and HCMV-positive cases were found in children aged 0-4 years and HHV-7 was most frequent in the 15-39 age group. In light of the World Health Organization measles elimination goal, the introduction of laboratory methods for differential diagnosis is required for the final classification of clinically compatible cases. The used screening panel allowed us to increase the percentage of virus-positive cases to 87.5%, allowing us to clarify viral involvement and epidemiology, improve diagnosis, and strengthen surveillance activities. As all investigated pathogens were detected, this diagnostic panel was a suitable tool to complement MV and RuV surveillance activities.
Substances chimiques
Antibodies, Viral
0
Immunoglobulin M
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e29141Informations de copyright
© 2023 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.
Références
Moss WJ. Measles. Lancet. 2017;390:2490-2502. doi:10.1016/S0140-6736(17)31463-0
Moss WJ, Strebel P. Biological feasibility of measles eradication. J Infect Dis. 2011;204(suppl 1):S47-S53. doi:10.1093/infdis/jir065
World Health Organization. Regional office for Europe. Eliminating measles and rubella and preventing congenital rubella infection: WHO European region strategic plan 2005−2010; Weltgesundheitsorganisation, Ed.; Copenhagen, 2005. ISBN 978-92-890-1382-6.
World Health Organization. Immunological basis for immunization series module 7: measles update 2020. 2020. Accessed May 2, 2023. https://aps.who.int/iris/handle/10665/331533
World Health Organization. Global measles and rubella strategic plan: 2012. 2012, 42. Accessed May 2, 2023. https://www.who.int/pubblications/i/item/9789241503396
Minta AA, Ferrari M, Antoni S, et al. Progress toward regional measles elimination-worldwide, 2000-2021. MMWR Morb Mortal Wkly Rep. 2022;71:1489-1495. doi:10.15585/mmwr.mm7147a1
Zimmerman LA, Knapp JK, Antoni S, Grant GB, Reef SE. Progress toward rubella and congenital rubella syndrome control and elimination-worldwide, 2012-2020. MMWR Morb Mortal Wkly Rep. 2022;71:196-201. doi:10.15585/mmwr.mm7106a2
Ministero della Salute. Piano nazionale per l'eliminazione del morbillo e della rosolia congenita 2010-2015. 2011. Accessed May 2, 2023. https://www.salute.gov.it/imgs/C_17_pubblicazioni_1519_allegato.pdf
Moronet Lab. liberi dal morbillo e dalla rosolia. Accessed May 2, 2023. https://moronetlab.it
World Health Organization. Measles: vaccine preventable diseases surveillance standards. Accessed June 6, 2023. https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-measles
World Health Organization. Rubella: vaccine preventable diseases surveillance standards. Accessed June 6, 2023. https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-rubella
Hübschen JM, Bork SM, Brown KE, et al. Challenges of measles and rubella laboratory diagnostic in the era of elimination. Clin Microbiol Infect. 2017;23:511-515. doi:10.1016/j.cmi.2017.04.009
Muzumdar S, Rothe MJ, Grant-Kels JM. The rash with maculopapules and fever in children. Clin Dermatol. 2019;37:119-128. doi:10.1016/j.clindermatol.2018.12.005
Drago F, Ciccarese G, Gasparini G, et al. Contemporary infectious exanthems: an update. Future Microbiol. 2017;12:171-193. doi:10.2217/fmb-2016-0147
Kang JH. Febrile illness with skin rashes. Infect Chemother. 2015;47:155-166. doi:10.3947/ic.2015.47.3.155
Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol. 2020;34:e212-e213. doi:10.1111/jdv.16387
Freeman EE, McMahon DE, Lipoff JB, et al. The spectrum of COVID-19-associated dermatologic manifestations: an international registry of 716 patients from 31 countries. J Am Acad Dermatol. 2020;83:1118-1129. doi:10.1016/j.jaad.2020.06.1016
Torner N, Mercader S, Dominguez A, et al. Etiological analysis of discarded measles in the context of a measles outbreak among a highly immunized population. Pediatr Int. 2023;65:e15430. doi:10.1111/ped.15430
Ramsay M. Causes of morbilliform rash in a highly immunised English population. Arch Dis Child. 2002;87:202-206. doi:10.1136/adc.87.3.202
Yermalovich MA, Semeiko GV, Samoilovich EO, Svirchevskaya EY, Muller CP, Hübschen JM. Etiology of maculopapular rash in measles and rubella suspected patients from Belarus. PLoS One. 2014;9:e111541. doi:10.1371/journal.pone.0111541
Kaida Y, Kanbayashi D, Kurata T, Mori H. Contribution of parvovirus B19 in suspected cases of measles/rubella in Osaka, Japan, between 2011 and 2021. J Med Virol. 2023;95:e28593. doi:10.1002/jmv.28593
World Health Organization. Manual for the laboratory diagnosis of measles and rubella virus infection. 2007. Accessed June 12, 2023. https://apps.who.int/iris/handle/10665/70211
Bianchi S, Faccini M, Lamberti A, et al. Measles surveillance activities in the metropolitan area of Milan during 2017-2018. J Prev Med Hyg. 2019;60:286. doi:10.15167/2421-4248/jpmh2019.60.4.1269
Centers for Disease Control and Prevention. CDC 2019-novel coronavirus (2019-NCoV) real-time rRT-PCR panel primers and probes. Accessed May 2, 2023. https://stacks.cdc.gov/view/cdc/84525/cdc_84525/DS1.pdf
Amendola A, Canuti M, Bianchi S, et al. Molecular evidence for SARS-CoV-2 in samples collected from patients with morbilliform eruptions since late 2019 in Lombardy, northern Italy. Environ Res. 2022;215:113979. doi:10.1016/j.envres.2022.113979
OpenEpi. Accessed July 16, 2021. https://www.openepi.com
EpiCentro. Morbillo Rosolia News: il bollettino della sorveglianza integrata morbillo-rosolia. Accessed January 4, 2022. https://www.epicentro.iss.it/morbillo/bollettino
Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):9.
European Centre for Disease Prevention and Control. Weekly communicable disease threats report-Week 6, 5-11 Feb 2023. 2023. Accessed June 12, 2023. https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-5-11-february-2023-week-6
Facchin G, Bella A, Del Manso M, Rota MC, Filia A. Decline in reported measles cases in Italy in the COVID-19 era, January 2020 to July 2022: the need to prevent a resurgence upon lifting non-pharmaceutical pandemic measures. Vaccine. 2023;41:1286-1289. doi:10.1016/j.vaccine.2023.01.021
United Nations Children's Fund. Measles cases are spiking globally. Accessed June 6, 2023. https://www.unicef.org/stories/measles-cases-spiking-globally
de Los Ángeles Ribas M, Tejero Y, Cordero Y, et al. Identification of human parvovirus B19 among measles and rubella suspected patients from Cuba. J Med Virol. 2019;91(7):1351-1354. doi:10.1002/jmv.25444
Alves ADR, Raposo JV, de Sousa RMP, et al. Beyond arboviruses: a multicenter study to evaluate differential diagnosis of rash diseases and acute febrile illness cases in Rio de Janeiro, Brazil. PLoS One. 2022;17:e0271758. doi:10.1371/journal.pone.0271758
Martora F, Villani A, Fabbrocini G, Battista T. COVID-19 and cutaneous manifestations: a review of the published literature. J Cosmet Dermatol. 2023;22:4-10. doi:10.1111/jocd.15477
Amendola A, Bianchi S, Gori M, et al. Evidence of SARS-CoV-2 RNA in an oropharyngeal swab specimen, Milan, Italy, early December 2019. Emerging Infect Dis. 2021;27:648-650. doi:10.3201/eid2702.204632
Gianotti R, Barberis M, Fellegara G, Galván-Casas C, Gianotti E. COVID-19-related dermatosis in November 2019: could this case be Italy's patient zero? Br J Dermatol. 2021;184:970-971. doi:10.1111/bjd.19804
Ward KN. The natural history and laboratory diagnosis of human herpesviruses-6 and −7 infections in the immunocompetent. J Clin Virol. 2005;32:183-193. doi:10.1016/j.jcv.2004.11.008
Pacsa AS, Essa S, Voevodin A, et al. Correlation between CMV genotypes, multiple infections with herpesviruses (HHV-6, 7) and development of CMV disease in kidney recipients in Kuwait. FEMS Immunol Med Microbiol. 2003;35:125-130. doi:10.1016/S0928-8244(03)00006-3
Tomaszewska A, Kryśko A, Dzieciątkowski T, et al. Co-infections with cytomegalovirus and human herpesvirus type 7 in adult polish allogeneic haematopoietic stem cell transplant recipients. Arch Immunol Ther Exp. 2014;62:77-80. doi:10.1007/s00005-013-0252-z
Del Moral-Hernández O, Castañón-Sánchez CA, Reyes-Navarrete S, et al. Multiple infections by EBV, HCMV and helicobacter pylori are highly frequent in patients with chronic gastritis and gastric cancer from southwest Mexico: an observational study. Medicine. 2019;98:e14124. doi:10.1097/MD.0000000000014124
Gatherer D, Depledge DP, Hartley CA, et al. ICTV virus taxonomy profile: herpesviridae 2021. J Gen Virol. 2021;102:102. doi:10.1099/jgv.0.001673
Grinde B. Herpesviruses: latency and reactivation-viral strategies and host response. J Oral Microbiol. 2013;5:22766. doi:10.3402/jom.v5i0.22766
Yap T, Khor S, Kim JS, et al. Intraoral human herpes viruses detectable by PCR in majority of patients. Oral Dis. 2021;27:378-387. doi:10.1111/odi.13523
Plotogea M, Isam AJ, Frincu F, et al. An overview of cytomegalovirus infection in pregnancy. Diagnostics. 2022;12:2429. doi:10.3390/diagnostics12102429
Abbott RJ, Pachnio A, Pedroza-Pacheco I, et al. Asymptomatic primary infection with Epstein-Barr virus: observations on young adult cases. J Virol. 2017;91:e00382-17. doi:10.1128/JVI.00382-17
Chen J, Song J, Dai L, Post SR, Qin Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: a potential threat in the postpandemic era? J Med Virol. 2022;94:5103-5111. doi:10.1002/jmv.27994
Saade A, Moratelli G, Azoulay E, Darmon M. Herpesvirus reactivation during severe COVID-19 and high rate of immune defect. Infectious Diseases Now. 2021;51:676-679. doi:10.1016/j.idnow.2021.07.005
World Health Organization. Laboratory diagnosis of measles infection and monitoring of measles immunization: memorandum from a WHO meeting. Bull World Health Organ. 1994;72:207-211.
Moss WJ, Katz SL. Chapter 316. Measles. In: Rudolph CD, Rudolph AM, Lister GE, First LR, Gershon AA, eds. Rudolph's Pediatrics. The McGraw-Hill Companies; 2011.
Anci E, Braun C, Marinosci A, et al. Viral infections and cutaneous drug-related eruptions. Front Pharmacol. 11, 2021.