Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
24
11
2022
accepted:
31
08
2023
medline:
10
11
2023
pubmed:
6
10
2023
entrez:
5
10
2023
Statut:
ppublish
Résumé
A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
Identifiants
pubmed: 37798380
doi: 10.1038/s41588-023-01520-w
pii: 10.1038/s41588-023-01520-w
pmc: PMC10632150
doi:
Substances chimiques
Insulin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1807-1819Subventions
Organisme : Wellcome Trust (Wellcome)
ID : WT104150
Organisme : Wellcome Trust (Wellcome)
ID : 098395/z/12/z
Organisme : Wellcome Trust (Wellcome)
ID : WT104150, WT220390
Organisme : Norges Forskningsråd (Research Council of Norway)
ID : 325640
Organisme : Department of Education and Training | Australian Research Council (ARC)
ID : DE220101226
Organisme : Carlsbergfondet (Carlsberg Foundation)
ID : CF15-0899
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF17OC0027594
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF14CC0001
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF20OC0063872
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Health (H2020 Societal Challenges - Health, Demographic Change and Well-being)
ID : 874739, 733206, 633595
Organisme : Academy of Finland (Suomen Akatemia)
ID : 285547
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/N013166/1
Organisme : DH | NIHR | Health Services Research Programme (NIHR Health Services Research Programme)
ID : R01ES029212
Organisme : DH | NIHR | Health Services Research Programme (NIHR Health Services Research Programme)
ID : 098395/z/12/z
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
ID : ES029212
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101021500
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101021566
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 874739, 733206, 633595
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: 'Ideas' Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 648916
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R335-2019-2339
Organisme : British Heart Foundation (BHF)
ID : CH/F/20/90003, AA/18/7/34219
Organisme : RCUK | MRC | Medical Research Foundation
ID : MC_UU_00011/6
Organisme : Australian National Preventive Health Agency (ANPHA)
ID : APP1137714
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : GNT1157714, GNT1183074
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2019-01004, 2015-02559
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : R01HD101669
Organisme : Burroughs Wellcome Fund (BWF)
ID : 10172896
Organisme : Helse Vest (Western Norway Regional Health Authority)
ID : 912250, F-12144
Organisme : Det Frie Forskningsråd (Danish Council for Independent Research)
ID : 0134-00244B
Organisme : Oak Foundation
ID : OCAY-18-598
Organisme : Diabetes Fonds (Dutch Diabetes Research Foundation)
ID : 2017.81.002
Organisme : ZonMw (Netherlands Organisation for Health Research and Development)
ID : 543003109, 09150172110034, 529051026
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Fast Track to Innovation (FTI)
ID : 727565
Informations de copyright
© 2023. The Author(s).
Références
Burton, G. J. & Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–S761 (2018).
pubmed: 29422210
doi: 10.1016/j.ajog.2017.11.577
Vahanian, S. A., Lavery, J. A., Ananth, C. V. & Vintzileos, A. Placental implantation abnormalities and risk of preterm delivery: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. 213, S78–S90 (2015).
pubmed: 26428506
doi: 10.1016/j.ajog.2015.05.058
Fisher, S. J. Why is placentation abnormal in preeclampsia? Am. J. Obstet. Gynecol. 213, S115–S122 (2015).
pubmed: 26428489
pmcid: 4592742
doi: 10.1016/j.ajog.2015.08.042
Magee, L. A., Nicolaides, K. H. & von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 386, 1817–1832 (2022).
pubmed: 35544388
doi: 10.1056/NEJMra2109523
Gaillard, R., Steegers, E. A. P., Tiemeier, H., Hofman, A. & Jaddoe, V. W. V. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study. Circulation 128, 2202–2210 (2013).
pubmed: 24135069
doi: 10.1161/CIRCULATIONAHA.113.003881
Kratimenos, P. & Penn, A. A. Placental programming of neuropsychiatric disease. Pediatr. Res. 86, 157–164 (2019).
pubmed: 31003234
doi: 10.1038/s41390-019-0405-9
Burton, G. J., Fowden, A. L. & Thornburg, K. L. Placental origins of chronic disease. Physiol. Rev. 96, 1509–1565 (2016).
pubmed: 27604528
pmcid: 5504455
doi: 10.1152/physrev.00029.2015
Nelson, D. M. How the placenta affects your life, from womb to tomb. Am. J. Obstet. Gynecol. 213, S12–S13 (2015).
pubmed: 26428490
doi: 10.1016/j.ajog.2015.08.015
Ray, J. G., Vermeulen, M. J., Schull, M. J. & Redelmeier, D. A. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet 366, 1797–1803 (2005).
pubmed: 16298217
doi: 10.1016/S0140-6736(05)67726-4
Risnes, K. R., Romundstad, P. R., Nilsen, T. I. L., Eskild, A. & Vatten, L. J. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am. J. Epidemiol. 170, 622–631 (2009).
pubmed: 19638481
doi: 10.1093/aje/kwp182
Thornburg, K. L., O’Tierney, P. F. & Louey, S. Review: the placenta is a programming agent for cardiovascular disease. Placenta 31, S54–S59 (2010).
pubmed: 20149453
pmcid: 2846089
doi: 10.1016/j.placenta.2010.01.002
Haavaldsen, C., Samuelsen, S. O. & Eskild, A. The association of maternal age with placental weight: a population-based study of 536,954 pregnancies. BJOG 118, 1470–1476 (2011).
pubmed: 21749632
doi: 10.1111/j.1471-0528.2011.03053.x
Matthiesen, N. B. et al. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924,422 liveborn infants. Circulation 134, 1546–1556 (2016).
pubmed: 27742737
doi: 10.1161/CIRCULATIONAHA.116.021793
Salafia, C. M. et al. Placental characteristics and birthweight. Paediatr. Perinat. Epidemiol. 22, 229–239 (2008).
pubmed: 18426518
doi: 10.1111/j.1365-3016.2008.00935.x
Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).
pubmed: 31043758
pmcid: 6522365
doi: 10.1038/s41588-019-0403-1
Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).
pubmed: 34282336
doi: 10.1038/s41588-021-00896-x
Peng, S. et al. Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 14, e1007799 (2018).
pubmed: 30596636
pmcid: 6329610
doi: 10.1371/journal.pgen.1007799
Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).
pubmed: 31776138
doi: 10.1242/dev.163428
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
pubmed: 30429548
pmcid: 7612850
doi: 10.1038/s41586-018-0698-6
Flatley, C. et al. Placental weight centiles adjusted for age, parity and fetal sex. Placenta 117, 87–94 (2022).
pubmed: 34773745
doi: 10.1016/j.placenta.2021.10.011
Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).
pubmed: 30962613
pmcid: 6520146
doi: 10.1038/s41562-019-0566-x
Moen, G.-H. et al. Using genomic structural equation modeling to partition the genetic covariance between birthweight and cardiometabolic risk factors into maternal and offspring components in the Norwegian HUNT study. Behav. Genet. 53, 40–52 (2023).
pubmed: 36322199
doi: 10.1007/s10519-022-10116-9
Magnus, P. et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).
pubmed: 27063603
doi: 10.1093/ije/dyw029
Helgeland, Ø. et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat. Metab. 4, 344–358 (2022).
pubmed: 35315439
doi: 10.1038/s42255-022-00549-1
Helgeland, Ø. et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat. Commun. 10, 4448 (2019).
pubmed: 31575865
pmcid: 6773698
doi: 10.1038/s41467-019-12308-0
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
pubmed: 20016592
pmcid: 3746295
doi: 10.1038/nature08625
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Peng, S. et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet. 26, 3432–3441 (2017).
pubmed: 28854703
pmcid: 5886245
doi: 10.1093/hmg/ddx265
Groleau, M. et al. Comparative epigenome-wide analysis highlights placenta-specific differentially methylated regions. Epigenomics 13, 357–368 (2021).
pubmed: 33661023
doi: 10.2217/epi-2020-0271
Guillemette, L. et al. Genetics of glucose regulation in gestation and growth (Gen3G): a prospective prebirth cohort of mother–child pairs in Sherbrooke, Canada. BMJ Open 6, e010031 (2016).
pubmed: 26842272
pmcid: 4746442
doi: 10.1136/bmjopen-2015-010031
Jennewein, M. F. et al. Fc glycan-mediated regulation of placental antibody transfer. Cell 178, 202–215 (2019).
pubmed: 31204102
pmcid: 6741440
doi: 10.1016/j.cell.2019.05.044
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900
doi: 10.1126/science.1260419
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).
pubmed: 27626380
pmcid: 5295821
doi: 10.1038/nature19356
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488
pmcid: 6697541
doi: 10.1038/s41586-018-0175-2
Seixas, S. & Marques, P. I. Known mutations at the cause of α-1 antitrypsin deficiency an updated overview of SERPINA1 variation spectrum. Appl. Clin. Genet. 14, 173–194 (2021).
pubmed: 33790624
pmcid: 7997584
doi: 10.2147/TACG.S257511
Scalise, M., Galluccio, M., Console, L., Pochini, L. & Indiveri, C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front. Chem. 6, 243 (2018).
pubmed: 29988369
pmcid: 6023973
doi: 10.3389/fchem.2018.00243
Fejzo, M. S. et al. Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat. Commun. 9, 1178 (2018).
pubmed: 29563502
pmcid: 5862842
doi: 10.1038/s41467-018-03258-0
Steinthorsdottir, V. et al. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat. Commun. 11, 5976 (2020).
pubmed: 33239696
pmcid: 7688949
doi: 10.1038/s41467-020-19733-6
Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).
pubmed: 28877031
pmcid: 5561422
doi: 10.1056/NEJMoa1612665
Laisk, T. et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat. Commun. 11, 5980 (2020).
pubmed: 33239672
pmcid: 7689465
doi: 10.1038/s41467-020-19742-5
Wang, Y. et al. Genome-wide association study identifies 16 genomic regions associated with circulating cytokines at birth. PLoS Genet. 16, e1009163 (2020).
pubmed: 33227023
pmcid: 7721185
doi: 10.1371/journal.pgen.1009163
Chen, J. et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs. PLoS Med. 17, e1003305 (2020).
pubmed: 32841251
pmcid: 7447062
doi: 10.1371/journal.pmed.1003305
Johnsen, S. L. et al. Fetal size in the second trimester is associated with the duration of pregnancy, small fetuses having longer pregnancies. BMC Pregnancy Childbirth 8, 25 (2008).
pubmed: 18627638
pmcid: 2492839
doi: 10.1186/1471-2393-8-25
Shields, B. M. et al. Mutations in the glucokinase gene of the fetus result in reduced placental weight. Diabetes Care 31, 753–757 (2008).
pubmed: 18184897
doi: 10.2337/dc07-1750
Hattersley, A. T. et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19, 268–270 (1998).
pubmed: 9662401
doi: 10.1038/953
Macdonald-Wallis, C., Tilling, K., Fraser, A., Nelson, S. M. & Lawlor, D. A. Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: findings from a prospective cohort. Hypertension 64, 36–44 (2014).
pubmed: 24821945
doi: 10.1161/HYPERTENSIONAHA.113.02766
Tyrrell, J. et al. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight. JAMA 315, 1129–1140 (2016).
pubmed: 26978208
pmcid: 4811305
doi: 10.1001/jama.2016.1975
Leon, R. L. et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr. Res. 91, 787–794 (2022).
pubmed: 33864014
doi: 10.1038/s41390-021-01521-7
Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl Acad. Sci. USA 96, 5203–5208 (1999).
pubmed: 10220444
pmcid: 21842
doi: 10.1073/pnas.96.9.5203
Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).
pubmed: 29377879
pmcid: 6022848
doi: 10.1038/nrendo.2017.166
Tan, G. S. Diabetes, metabolic abnormalities, and glaucoma. Arch. Ophthalmol. 127, 1354 (2009).
pubmed: 19822853
doi: 10.1001/archophthalmol.2009.268
Müssig, K. et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes 58, 1715–1720 (2009).
pubmed: 19366866
pmcid: 2699873
doi: 10.2337/db08-1589
Hivert, M.-F. et al. Interplay of placental DNA methylation and maternal insulin sensitivity in pregnancy. Diabetes 69, 484–492 (2020).
pubmed: 31882564
pmcid: 7213861
doi: 10.2337/db19-0798
Gray, K. J., Saxena, R. & Karumanchi, S. A. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am. J. Obstet. Gynecol. 218, 211–218 (2018).
pubmed: 29138037
doi: 10.1016/j.ajog.2017.11.562
Burton, G. J., Redman, C. W., Roberts, J. M. & Moffett, A. Pre-eclampsia: pathophysiology and clinical implications. BMJ 366, l2381 (2019).
pubmed: 31307997
doi: 10.1136/bmj.l2381
Dahlstrøm, B., Romundstad, P., Øian, P., Vatten, L. J. & Eskild, A. Placenta weight in pre-eclampsia. Acta Obstet. Gynecol. Scand. 87, 608–611 (2008).
pubmed: 18568459
doi: 10.1080/00016340802056178
Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).
pubmed: 33692543
pmcid: 7611644
doi: 10.1038/s41586-021-03345-1
Rasmussen, M. et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 601, 422–427 (2022).
pubmed: 34987224
pmcid: 8770117
doi: 10.1038/s41586-021-04249-w
Gong, S. et al. The RNA landscape of the human placenta in health and disease. Nat. Commun. 12, 2639 (2021).
pubmed: 33976128
pmcid: 8113443
doi: 10.1038/s41467-021-22695-y
Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).
pubmed: 23657481
doi: 10.1038/nrg3472
Sunde, I. D. et al. Placenta, cord and membranes: a dual center validation study of midwives’ classifications and notifications to the Medical Birth Registry of Norway. Acta Obstet. Gynecol. Scand. 96, 1120–1127 (2017).
pubmed: 28481411
doi: 10.1111/aogs.13164
Broad, K. D. & Keverne, E. B. Placental protection of the fetal brain during short-term food deprivation. Proc. Natl Acad. Sci. USA 108, 15237–15241 (2011).
pubmed: 21810990
pmcid: 3174621
doi: 10.1073/pnas.1106022108
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Epicenteredresearch/PACEanalysis. GitHub. https://github.com/epicenteredresearch/PACEanalysis#updates-in-version-017 (2022).
Binder, A. M. QC steps. https://www.epicenteredresearch.com/pace/qcsteps (2021).
Felix, J. F. et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int. J. Epidemiol. 47, 22–23 (2018).
pubmed: 29025028
doi: 10.1093/ije/dyx190
Yuan, V. et al. Cell-specific characterization of the placental methylome. BMC Genomics 22, 6 (2021).
pubmed: 33407091
pmcid: 7788826
doi: 10.1186/s12864-020-07186-6
Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).
pubmed: 27717381
pmcid: 5055731
doi: 10.1186/s13059-016-1066-1
Fortin, J.-P., Triche, T. J. Jr & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33, 558–560 (2017).
pubmed: 28035024
doi: 10.1093/bioinformatics/btw691
Triche, T. J. Jr, Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 41, e90 (2013).
pubmed: 23476028
pmcid: 3627582
doi: 10.1093/nar/gkt090
Fortin, J.-P. et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 15, 503 (2014).
pubmed: 25599564
pmcid: 4283580
doi: 10.1186/s13059-014-0503-2
Teschendorff, A. E. et al. A β-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450k DNA methylation data. Bioinformatics 29, 189–196 (2013).
pubmed: 23175756
doi: 10.1093/bioinformatics/bts680
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
pubmed: 16632515
doi: 10.1093/biostatistics/kxj037
Bourgey, M., Dali, R., Eveleigh, R., Chen, K. C. & Letourneau, L. GenPipes: an open-source framework for distributed and scalable genomic analyses. Gigascience 8, giz037 (2019).
pubmed: 31185495
pmcid: 6559338
doi: 10.1093/gigascience/giz037
Taylor-Weiner, A. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol. 20, 228 (2019).
pubmed: 31675989
pmcid: 6823959
doi: 10.1186/s13059-019-1836-7
Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).
pubmed: 31233103
pmcid: 6853652
doi: 10.1093/bioinformatics/btz469
Gillett, A. C., Vassos, E. & Lewis, C. M. Transforming summary statistics from logistic regression to the liability scale: application to genetic and environmental risk scores. Hum. Hered. 83, 210–224 (2018).
pubmed: 30865946
doi: 10.1159/000495697
Abalos, E., Cuesta, C., Grosso, A. L., Chou, D. & Say, L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 170, 1–7 (2013).
pubmed: 23746796
doi: 10.1016/j.ejogrb.2013.05.005
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253
pmcid: 4469799
doi: 10.1093/ije/dyv080
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965
Bybjerg-Grauholm, J. et al. The iPSYCH2015 case-cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2020.11.30.20237768v1 (2020).
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455
doi: 10.1093/bioinformatics/btaa1029
Vaudel, M., Flatley, C. & Beaumont, R. EarlyGrowthGenetics/placental_weight_code: Freeze_23.08.18. Zenodo. https://doi.org/10.5281/zenodo.8264577 (2023).