Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 24 11 2022
accepted: 31 08 2023
medline: 10 11 2023
pubmed: 6 10 2023
entrez: 5 10 2023
Statut: ppublish

Résumé

A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.

Identifiants

pubmed: 37798380
doi: 10.1038/s41588-023-01520-w
pii: 10.1038/s41588-023-01520-w
pmc: PMC10632150
doi:

Substances chimiques

Insulin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1807-1819

Subventions

Organisme : Wellcome Trust (Wellcome)
ID : WT104150
Organisme : Wellcome Trust (Wellcome)
ID : 098395/z/12/z
Organisme : Wellcome Trust (Wellcome)
ID : WT104150, WT220390
Organisme : Norges Forskningsråd (Research Council of Norway)
ID : 325640
Organisme : Department of Education and Training | Australian Research Council (ARC)
ID : DE220101226
Organisme : Carlsbergfondet (Carlsberg Foundation)
ID : CF15-0899
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF17OC0027594
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF14CC0001
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF20OC0063872
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Societal Challenges | H2020 Health (H2020 Societal Challenges - Health, Demographic Change and Well-being)
ID : 874739, 733206, 633595
Organisme : Academy of Finland (Suomen Akatemia)
ID : 285547
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/N013166/1
Organisme : DH | NIHR | Health Services Research Programme (NIHR Health Services Research Programme)
ID : R01ES029212
Organisme : DH | NIHR | Health Services Research Programme (NIHR Health Services Research Programme)
ID : 098395/z/12/z
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
ID : ES029212
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101021500
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101021566
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 874739, 733206, 633595
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: 'Ideas' Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 648916
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R335-2019-2339
Organisme : British Heart Foundation (BHF)
ID : CH/F/20/90003, AA/18/7/34219
Organisme : RCUK | MRC | Medical Research Foundation
ID : MC_UU_00011/6
Organisme : Australian National Preventive Health Agency (ANPHA)
ID : APP1137714
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : GNT1157714, GNT1183074
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2019-01004, 2015-02559
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : R01HD101669
Organisme : Burroughs Wellcome Fund (BWF)
ID : 10172896
Organisme : Helse Vest (Western Norway Regional Health Authority)
ID : 912250, F-12144
Organisme : Det Frie Forskningsråd (Danish Council for Independent Research)
ID : 0134-00244B
Organisme : Oak Foundation
ID : OCAY-18-598
Organisme : Diabetes Fonds (Dutch Diabetes Research Foundation)
ID : 2017.81.002
Organisme : ZonMw (Netherlands Organisation for Health Research and Development)
ID : 543003109, 09150172110034, 529051026
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Fast Track to Innovation (FTI)
ID : 727565

Informations de copyright

© 2023. The Author(s).

Références

Burton, G. J. & Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–S761 (2018).
pubmed: 29422210 doi: 10.1016/j.ajog.2017.11.577
Vahanian, S. A., Lavery, J. A., Ananth, C. V. & Vintzileos, A. Placental implantation abnormalities and risk of preterm delivery: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. 213, S78–S90 (2015).
pubmed: 26428506 doi: 10.1016/j.ajog.2015.05.058
Fisher, S. J. Why is placentation abnormal in preeclampsia? Am. J. Obstet. Gynecol. 213, S115–S122 (2015).
pubmed: 26428489 pmcid: 4592742 doi: 10.1016/j.ajog.2015.08.042
Magee, L. A., Nicolaides, K. H. & von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 386, 1817–1832 (2022).
pubmed: 35544388 doi: 10.1056/NEJMra2109523
Gaillard, R., Steegers, E. A. P., Tiemeier, H., Hofman, A. & Jaddoe, V. W. V. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study. Circulation 128, 2202–2210 (2013).
pubmed: 24135069 doi: 10.1161/CIRCULATIONAHA.113.003881
Kratimenos, P. & Penn, A. A. Placental programming of neuropsychiatric disease. Pediatr. Res. 86, 157–164 (2019).
pubmed: 31003234 doi: 10.1038/s41390-019-0405-9
Burton, G. J., Fowden, A. L. & Thornburg, K. L. Placental origins of chronic disease. Physiol. Rev. 96, 1509–1565 (2016).
pubmed: 27604528 pmcid: 5504455 doi: 10.1152/physrev.00029.2015
Nelson, D. M. How the placenta affects your life, from womb to tomb. Am. J. Obstet. Gynecol. 213, S12–S13 (2015).
pubmed: 26428490 doi: 10.1016/j.ajog.2015.08.015
Ray, J. G., Vermeulen, M. J., Schull, M. J. & Redelmeier, D. A. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet 366, 1797–1803 (2005).
pubmed: 16298217 doi: 10.1016/S0140-6736(05)67726-4
Risnes, K. R., Romundstad, P. R., Nilsen, T. I. L., Eskild, A. & Vatten, L. J. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am. J. Epidemiol. 170, 622–631 (2009).
pubmed: 19638481 doi: 10.1093/aje/kwp182
Thornburg, K. L., O’Tierney, P. F. & Louey, S. Review: the placenta is a programming agent for cardiovascular disease. Placenta 31, S54–S59 (2010).
pubmed: 20149453 pmcid: 2846089 doi: 10.1016/j.placenta.2010.01.002
Haavaldsen, C., Samuelsen, S. O. & Eskild, A. The association of maternal age with placental weight: a population-based study of 536,954 pregnancies. BJOG 118, 1470–1476 (2011).
pubmed: 21749632 doi: 10.1111/j.1471-0528.2011.03053.x
Matthiesen, N. B. et al. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924,422 liveborn infants. Circulation 134, 1546–1556 (2016).
pubmed: 27742737 doi: 10.1161/CIRCULATIONAHA.116.021793
Salafia, C. M. et al. Placental characteristics and birthweight. Paediatr. Perinat. Epidemiol. 22, 229–239 (2008).
pubmed: 18426518 doi: 10.1111/j.1365-3016.2008.00935.x
Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).
pubmed: 31043758 pmcid: 6522365 doi: 10.1038/s41588-019-0403-1
Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).
pubmed: 34282336 doi: 10.1038/s41588-021-00896-x
Peng, S. et al. Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 14, e1007799 (2018).
pubmed: 30596636 pmcid: 6329610 doi: 10.1371/journal.pgen.1007799
Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).
pubmed: 31776138 doi: 10.1242/dev.163428
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
pubmed: 30429548 pmcid: 7612850 doi: 10.1038/s41586-018-0698-6
Flatley, C. et al. Placental weight centiles adjusted for age, parity and fetal sex. Placenta 117, 87–94 (2022).
pubmed: 34773745 doi: 10.1016/j.placenta.2021.10.011
Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).
pubmed: 30962613 pmcid: 6520146 doi: 10.1038/s41562-019-0566-x
Moen, G.-H. et al. Using genomic structural equation modeling to partition the genetic covariance between birthweight and cardiometabolic risk factors into maternal and offspring components in the Norwegian HUNT study. Behav. Genet. 53, 40–52 (2023).
pubmed: 36322199 doi: 10.1007/s10519-022-10116-9
Magnus, P. et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).
pubmed: 27063603 doi: 10.1093/ije/dyw029
Helgeland, Ø. et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat. Metab. 4, 344–358 (2022).
pubmed: 35315439 doi: 10.1038/s42255-022-00549-1
Helgeland, Ø. et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat. Commun. 10, 4448 (2019).
pubmed: 31575865 pmcid: 6773698 doi: 10.1038/s41467-019-12308-0
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
pubmed: 20016592 pmcid: 3746295 doi: 10.1038/nature08625
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Peng, S. et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet. 26, 3432–3441 (2017).
pubmed: 28854703 pmcid: 5886245 doi: 10.1093/hmg/ddx265
Groleau, M. et al. Comparative epigenome-wide analysis highlights placenta-specific differentially methylated regions. Epigenomics 13, 357–368 (2021).
pubmed: 33661023 doi: 10.2217/epi-2020-0271
Guillemette, L. et al. Genetics of glucose regulation in gestation and growth (Gen3G): a prospective prebirth cohort of mother–child pairs in Sherbrooke, Canada. BMJ Open 6, e010031 (2016).
pubmed: 26842272 pmcid: 4746442 doi: 10.1136/bmjopen-2015-010031
Jennewein, M. F. et al. Fc glycan-mediated regulation of placental antibody transfer. Cell 178, 202–215 (2019).
pubmed: 31204102 pmcid: 6741440 doi: 10.1016/j.cell.2019.05.044
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900 doi: 10.1126/science.1260419
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).
pubmed: 27626380 pmcid: 5295821 doi: 10.1038/nature19356
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488 pmcid: 6697541 doi: 10.1038/s41586-018-0175-2
Seixas, S. & Marques, P. I. Known mutations at the cause of α-1 antitrypsin deficiency an updated overview of SERPINA1 variation spectrum. Appl. Clin. Genet. 14, 173–194 (2021).
pubmed: 33790624 pmcid: 7997584 doi: 10.2147/TACG.S257511
Scalise, M., Galluccio, M., Console, L., Pochini, L. & Indiveri, C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front. Chem. 6, 243 (2018).
pubmed: 29988369 pmcid: 6023973 doi: 10.3389/fchem.2018.00243
Fejzo, M. S. et al. Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat. Commun. 9, 1178 (2018).
pubmed: 29563502 pmcid: 5862842 doi: 10.1038/s41467-018-03258-0
Steinthorsdottir, V. et al. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat. Commun. 11, 5976 (2020).
pubmed: 33239696 pmcid: 7688949 doi: 10.1038/s41467-020-19733-6
Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).
pubmed: 28877031 pmcid: 5561422 doi: 10.1056/NEJMoa1612665
Laisk, T. et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat. Commun. 11, 5980 (2020).
pubmed: 33239672 pmcid: 7689465 doi: 10.1038/s41467-020-19742-5
Wang, Y. et al. Genome-wide association study identifies 16 genomic regions associated with circulating cytokines at birth. PLoS Genet. 16, e1009163 (2020).
pubmed: 33227023 pmcid: 7721185 doi: 10.1371/journal.pgen.1009163
Chen, J. et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs. PLoS Med. 17, e1003305 (2020).
pubmed: 32841251 pmcid: 7447062 doi: 10.1371/journal.pmed.1003305
Johnsen, S. L. et al. Fetal size in the second trimester is associated with the duration of pregnancy, small fetuses having longer pregnancies. BMC Pregnancy Childbirth 8, 25 (2008).
pubmed: 18627638 pmcid: 2492839 doi: 10.1186/1471-2393-8-25
Shields, B. M. et al. Mutations in the glucokinase gene of the fetus result in reduced placental weight. Diabetes Care 31, 753–757 (2008).
pubmed: 18184897 doi: 10.2337/dc07-1750
Hattersley, A. T. et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet. 19, 268–270 (1998).
pubmed: 9662401 doi: 10.1038/953
Macdonald-Wallis, C., Tilling, K., Fraser, A., Nelson, S. M. & Lawlor, D. A. Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: findings from a prospective cohort. Hypertension 64, 36–44 (2014).
pubmed: 24821945 doi: 10.1161/HYPERTENSIONAHA.113.02766
Tyrrell, J. et al. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight. JAMA 315, 1129–1140 (2016).
pubmed: 26978208 pmcid: 4811305 doi: 10.1001/jama.2016.1975
Leon, R. L. et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr. Res. 91, 787–794 (2022).
pubmed: 33864014 doi: 10.1038/s41390-021-01521-7
Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl Acad. Sci. USA 96, 5203–5208 (1999).
pubmed: 10220444 pmcid: 21842 doi: 10.1073/pnas.96.9.5203
Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).
pubmed: 29377879 pmcid: 6022848 doi: 10.1038/nrendo.2017.166
Tan, G. S. Diabetes, metabolic abnormalities, and glaucoma. Arch. Ophthalmol. 127, 1354 (2009).
pubmed: 19822853 doi: 10.1001/archophthalmol.2009.268
Müssig, K. et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes 58, 1715–1720 (2009).
pubmed: 19366866 pmcid: 2699873 doi: 10.2337/db08-1589
Hivert, M.-F. et al. Interplay of placental DNA methylation and maternal insulin sensitivity in pregnancy. Diabetes 69, 484–492 (2020).
pubmed: 31882564 pmcid: 7213861 doi: 10.2337/db19-0798
Gray, K. J., Saxena, R. & Karumanchi, S. A. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am. J. Obstet. Gynecol. 218, 211–218 (2018).
pubmed: 29138037 doi: 10.1016/j.ajog.2017.11.562
Burton, G. J., Redman, C. W., Roberts, J. M. & Moffett, A. Pre-eclampsia: pathophysiology and clinical implications. BMJ 366, l2381 (2019).
pubmed: 31307997 doi: 10.1136/bmj.l2381
Dahlstrøm, B., Romundstad, P., Øian, P., Vatten, L. J. & Eskild, A. Placenta weight in pre-eclampsia. Acta Obstet. Gynecol. Scand. 87, 608–611 (2008).
pubmed: 18568459 doi: 10.1080/00016340802056178
Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).
pubmed: 33692543 pmcid: 7611644 doi: 10.1038/s41586-021-03345-1
Rasmussen, M. et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 601, 422–427 (2022).
pubmed: 34987224 pmcid: 8770117 doi: 10.1038/s41586-021-04249-w
Gong, S. et al. The RNA landscape of the human placenta in health and disease. Nat. Commun. 12, 2639 (2021).
pubmed: 33976128 pmcid: 8113443 doi: 10.1038/s41467-021-22695-y
Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).
pubmed: 23657481 doi: 10.1038/nrg3472
Sunde, I. D. et al. Placenta, cord and membranes: a dual center validation study of midwives’ classifications and notifications to the Medical Birth Registry of Norway. Acta Obstet. Gynecol. Scand. 96, 1120–1127 (2017).
pubmed: 28481411 doi: 10.1111/aogs.13164
Broad, K. D. & Keverne, E. B. Placental protection of the fetal brain during short-term food deprivation. Proc. Natl Acad. Sci. USA 108, 15237–15241 (2011).
pubmed: 21810990 pmcid: 3174621 doi: 10.1073/pnas.1106022108
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Epicenteredresearch/PACEanalysis. GitHub. https://github.com/epicenteredresearch/PACEanalysis#updates-in-version-017 (2022).
Binder, A. M. QC steps. https://www.epicenteredresearch.com/pace/qcsteps (2021).
Felix, J. F. et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int. J. Epidemiol. 47, 22–23 (2018).
pubmed: 29025028 doi: 10.1093/ije/dyx190
Yuan, V. et al. Cell-specific characterization of the placental methylome. BMC Genomics 22, 6 (2021).
pubmed: 33407091 pmcid: 7788826 doi: 10.1186/s12864-020-07186-6
Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).
pubmed: 27717381 pmcid: 5055731 doi: 10.1186/s13059-016-1066-1
Fortin, J.-P., Triche, T. J. Jr & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33, 558–560 (2017).
pubmed: 28035024 doi: 10.1093/bioinformatics/btw691
Triche, T. J. Jr, Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 41, e90 (2013).
pubmed: 23476028 pmcid: 3627582 doi: 10.1093/nar/gkt090
Fortin, J.-P. et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 15, 503 (2014).
pubmed: 25599564 pmcid: 4283580 doi: 10.1186/s13059-014-0503-2
Teschendorff, A. E. et al. A β-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450k DNA methylation data. Bioinformatics 29, 189–196 (2013).
pubmed: 23175756 doi: 10.1093/bioinformatics/bts680
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
pubmed: 16632515 doi: 10.1093/biostatistics/kxj037
Bourgey, M., Dali, R., Eveleigh, R., Chen, K. C. & Letourneau, L. GenPipes: an open-source framework for distributed and scalable genomic analyses. Gigascience 8, giz037 (2019).
pubmed: 31185495 pmcid: 6559338 doi: 10.1093/gigascience/giz037
Taylor-Weiner, A. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol. 20, 228 (2019).
pubmed: 31675989 pmcid: 6823959 doi: 10.1186/s13059-019-1836-7
Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).
pubmed: 31233103 pmcid: 6853652 doi: 10.1093/bioinformatics/btz469
Gillett, A. C., Vassos, E. & Lewis, C. M. Transforming summary statistics from logistic regression to the liability scale: application to genetic and environmental risk scores. Hum. Hered. 83, 210–224 (2018).
pubmed: 30865946 doi: 10.1159/000495697
Abalos, E., Cuesta, C., Grosso, A. L., Chou, D. & Say, L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 170, 1–7 (2013).
pubmed: 23746796 doi: 10.1016/j.ejogrb.2013.05.005
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253 pmcid: 4469799 doi: 10.1093/ije/dyv080
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Bybjerg-Grauholm, J. et al. The iPSYCH2015 case-cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2020.11.30.20237768v1 (2020).
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455 doi: 10.1093/bioinformatics/btaa1029
Vaudel, M., Flatley, C. & Beaumont, R. EarlyGrowthGenetics/placental_weight_code: Freeze_23.08.18. Zenodo. https://doi.org/10.5281/zenodo.8264577 (2023).

Auteurs

Robin N Beaumont (RN)

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Christopher Flatley (C)

Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.

Marc Vaudel (M)

Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.

Xiaoping Wu (X)

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

Jing Chen (J)

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Gunn-Helen Moen (GH)

Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.

Line Skotte (L)

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

Øyvind Helgeland (Ø)

Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.

Pol Solé-Navais (P)

Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Karina Banasik (K)

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.

Clara Albiñana (C)

National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark.

Justiina Ronkainen (J)

Research Unit of Population Health, University of Oulu, Oulu, Finland.

João Fadista (J)

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden.
Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

Sara Elizabeth Stinson (SE)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Katerina Trajanoska (K)

Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Human Genetics, McGill University, Montréal, Québec, Canada.

Carol A Wang (CA)

School of Medicine and Public Health, College of Medicine, Public Health and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia.
Hunter Medical Research Institute, New Lambton Heights, Newcastle, New South Wales, Australia.

David Westergaard (D)

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark.
Methods and Analysis, Statistics Denmark, Copenhagen, Denmark.

Sundararajan Srinivasan (S)

Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK.

Carlos Sánchez-Soriano (C)

Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.

Jose Ramon Bilbao (JR)

Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Biobizkaia Health Research Institute, Barakaldo, Spain.
Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.

Catherine Allard (C)

Centre de recherche du Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, Québec, Canada.

Marika Groleau (M)

Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Teemu Kuulasmaa (T)

Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.

Daniel J Leirer (DJ)

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Frédérique White (F)

Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Pierre-Étienne Jacques (PÉ)

Centre de recherche du Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, Québec, Canada.
Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Haoxiang Cheng (H)

Icahn School of Medicine at Mount Sinai, New York City, NY, USA.

Ke Hao (K)

Icahn School of Medicine at Mount Sinai, New York City, NY, USA.

Ole A Andreassen (OA)

NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.

Bjørn Olav Åsvold (BO)

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway.
Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.

Mustafa Atalay (M)

Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.

Laxmi Bhatta (L)

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.

Luigi Bouchard (L)

Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, Québec, Canada.

Ben Michael Brumpton (BM)

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway.
Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.

Søren Brunak (S)

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.

Jonas Bybjerg-Grauholm (J)

Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.

Cathrine Ebbing (C)

Department of Clinical Science, University of Bergen, Bergen, Norway.
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.

Paul Elliott (P)

Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.

Line Engelbrechtsen (L)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Obstetrics and Gynecology, Herlev Hospital, Herlev, Denmark.

Christian Erikstrup (C)

Department Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
Department Clinical Medicine, Aarhus University, Aarhus, Denmark.

Marisa Estarlich (M)

Faculty of Nursing and Chiropody, Universitat de València, C/Menendez Pelayo, Valencia, Spain.
Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.
Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.

Stephen Franks (S)

Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.

Romy Gaillard (R)

The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Frank Geller (F)

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

Jakob Grove (J)

iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
Department of Biomedicine-Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark.
Center for Genomics and Personalized Medicine, Aarhus, Denmark.
Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.

David M Hougaard (DM)

Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.

Eero Kajantie (E)

Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, Oulu, Finland.
Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland.
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.

Camilla S Morgen (CS)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.

Ellen A Nohr (EA)

Institute of Clinical research, University of Southern Denmark, Odense, Denmark.

Mette Nyegaard (M)

Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Colin N A Palmer (CNA)

Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK.

Ole Birger Pedersen (OB)

Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Fernando Rivadeneira (F)

Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Sylvain Sebert (S)

Research Unit of Population Health, University of Oulu, Oulu, Finland.

Beverley M Shields (BM)

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Camilla Stoltenberg (C)

Norwegian Institute of Public Health, Oslo, Norway.
Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.

Ida Surakka (I)

Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.

Lise Wegner Thørner (LW)

Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.

Henrik Ullum (H)

Statens Serum Institut, Copenhagen, Denmark.

Marja Vaarasmaki (M)

Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, Oulu, Finland.
Department of Obstetrics and Gynaecology, Oulu University Hospital, Oulu, Finland.

Bjarni J Vilhjalmsson (BJ)

National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark.
Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.

Cristen J Willer (CJ)

Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.

Timo A Lakka (TA)

Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.
Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.

Dorte Gybel-Brask (D)

Psychotherapeutic Outpatient Clinic, Mental Health Services, Capital Region, Copenhagen, Denmark.

Mariona Bustamante (M)

Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
ISGlobal, Institute for Global Health, Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.

Torben Hansen (T)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Ewan R Pearson (ER)

Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK.

Rebecca M Reynolds (RM)

Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.

Sisse R Ostrowski (SR)

Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.

Craig E Pennell (CE)

School of Medicine and Public Health, College of Medicine, Public Health and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia.
Hunter Medical Research Institute, New Lambton Heights, Newcastle, New South Wales, Australia.

Vincent W V Jaddoe (VWV)

The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Janine F Felix (JF)

The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Andrew T Hattersley (AT)

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Mads Melbye (M)

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Danish Cancer Institute, Copenhagen, Denmark.
Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

Deborah A Lawlor (DA)

Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.
Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

Kristian Hveem (K)

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway.

Thomas Werge (T)

iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark.
Lundbeck Center for Geogenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.

Henriette Svarre Nielsen (HS)

Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Per Magnus (P)

Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.

David M Evans (DM)

Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

Bo Jacobsson (B)

Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.

Marjo-Riitta Järvelin (MR)

Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
Center for Life Course Health Research, University of Oulu, Oulu, Finland.
MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland.

Ge Zhang (G)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Marie-France Hivert (MF)

Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.
Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.

Stefan Johansson (S)

Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway. stefan.johansson@uib.no.
Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway. stefan.johansson@uib.no.

Rachel M Freathy (RM)

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK. r.freathy@exeter.ac.uk.
Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK. r.freathy@exeter.ac.uk.

Bjarke Feenstra (B)

Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. fee@ssi.dk.
Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark. fee@ssi.dk.

Pål R Njølstad (PR)

Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway. pal.njolstad@uib.no.
Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway. pal.njolstad@uib.no.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH