Organosolv Pretreatment of Cocoa Pod Husks: Isolation, Analysis, and Use of Lignin from an Abundant Waste Product.
Journal
ACS sustainable chemistry & engineering
ISSN: 2168-0485
Titre abrégé: ACS Sustain Chem Eng
Pays: United States
ID NLM: 101608852
Informations de publication
Date de publication:
02 Oct 2023
02 Oct 2023
Historique:
received:
20
06
2022
revised:
05
09
2023
medline:
6
10
2023
pubmed:
6
10
2023
entrez:
6
10
2023
Statut:
epublish
Résumé
Cocoa pod husks (CPHs) represent an underutilized component of the chocolate manufacturing process. While industry's current focus is understandably on the cocoa beans, the husks make up around 75 wt % of the fruit. Previous studies have been dominated by the carbohydrate polymers present in CPHs, but this work highlights the presence of the biopolymer lignin in this biomass. An optimized organosolv lignin isolation protocol was developed, delivering significant practical improvements. This new protocol may also prove to be useful for agricultural waste-derived biomasses in general. NMR analysis of the high quality lignin led to an improved structural understanding, with evidence provided to support deacetylation of the lignin occurring during the optimized pretreatment. Chemical transformation, using a tosylation, azidation, copper-catalyzed click protocol, delivered a modified lignin oligomer with an organophosphorus motif attached. Thermogravimetric analysis was used to demonstrate the oligomer's potential as a flame-retardant. Preliminary analysis of the other product streams isolated from the CPHs was also carried out.
Identifiants
pubmed: 37799817
doi: 10.1021/acssuschemeng.2c03670
pmc: PMC10548466
doi:
Types de publication
Journal Article
Langues
eng
Pagination
14323-14333Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
ChemSusChem. 2016 Oct 20;9(20):2974-2981
pubmed: 27650221
Biomacromolecules. 2017 Dec 11;18(12):4184-4195
pubmed: 29064677
RSC Adv. 2018 Sep 18;8(56):32252-32261
pubmed: 35547477
Bioresour Technol. 2021 Dec;342:125944
pubmed: 34537528
Energy Environ Sci. 2021 Jul 8;14(8):4147-4168
pubmed: 36324336
Molecules. 2021 Mar 09;26(5):
pubmed: 33803082
Chem Soc Rev. 2012 Dec 21;41(24):8075-98
pubmed: 22872312
Front Chem. 2021 May 10;9:655983
pubmed: 34041222
Chem Rev. 2010 Jun 9;110(6):3552-99
pubmed: 20218547
Bioresour Technol. 2023 Jan;368:128280
pubmed: 36368492
Bioresour Technol. 2023 Sep;384:129238
pubmed: 37245662
J Agric Food Chem. 2022 May 11;70(18):5624-5633
pubmed: 35473308
ChemistryOpen. 2019 Apr 25;8(5):601-605
pubmed: 31110931
Bioresour Technol. 2023 Feb;369:128328
pubmed: 36402280
Carbohydr Polym. 2018 Dec 15;202:497-503
pubmed: 30287028
Chem Sci. 2020 Sep 26;11(42):11498-11508
pubmed: 34094394
Polymers (Basel). 2023 Jan 28;15(3):
pubmed: 36771964
Bioresour Technol. 2021 Apr 28;334:125235
pubmed: 33957458
Chem Rev. 2018 Jan 24;118(2):614-678
pubmed: 29337543
Bioresour Technol. 2020 Apr;301:122784
pubmed: 31980318
Biomacromolecules. 2020 May 11;21(5):1920-1928
pubmed: 32160463
ACS Omega. 2017 Nov 30;2(11):8466-8474
pubmed: 31457383
Bioresour Technol. 2023 Oct;385:129396
pubmed: 37369316
Science. 2016 Oct 21;354(6310):329-333
pubmed: 27846566
J Agric Food Chem. 2001 Jun;49(6):2756-60
pubmed: 11409962
Ind Eng Chem Res. 2021 Dec 1;60(47):16827-16838
pubmed: 34880549
Bioresour Technol. 2018 Oct;266:322-334
pubmed: 29982054