Dimerization of confined Brønsted acids in enantioselective organocatalytic reactions.
Journal
Chemical science
ISSN: 2041-6520
Titre abrégé: Chem Sci
Pays: England
ID NLM: 101545951
Informations de publication
Date de publication:
04 Oct 2023
04 Oct 2023
Historique:
received:
21
07
2023
accepted:
08
09
2023
medline:
6
10
2023
pubmed:
6
10
2023
entrez:
6
10
2023
Statut:
epublish
Résumé
The formation of Brønsted acid aggregates in the course of asymmetric organocatalytic reactions is often overlooked in mechanistic studies, even though it might have a deep impact on the stereo-controlling factors of the transformations. In this work, we shed light on the influence of the catalyst structure and reaction conditions on the spontaneity of the aggregation process for popular chiral organocatalysts derived from phosphoric acids using high-level quantum mechanical calculations. Our study encompasses small and sterically unhindered chiral phosphoric acids as well as large and "confined" imidodiphosphates and imidodiphosphorimidates. These systems have recently proven particularly effective in promoting a large number of highly relevant asymmetric transformations. While cooperative catalytic effects of sterically less hindered chiral phosphoric acid catalysts are well appreciated in literature, it is found that the formation of catalyst dimers in solution is possible for both standard and confined catalysts. The spontaneity of the aggregation process depends on reaction conditions like solvent polarity, polarizability, temperature, the nature of the interaction with the substrate, as well as the catalyst architecture. Finally, it is shown that, at low temperatures (153 K), the aggregation process can profoundly influence the reaction kinetics and selectivity.
Identifiants
pubmed: 37799993
doi: 10.1039/d3sc03769j
pii: d3sc03769j
pmc: PMC10548523
doi:
Types de publication
Journal Article
Langues
eng
Pagination
10580-10590Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
Chem Sci. 2021 Mar 25;12(19):6551-6568
pubmed: 34040731
Science. 2018 Mar 30;359(6383):1501-1505
pubmed: 29599238
Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15665-15673
pubmed: 32343883
J Am Chem Soc. 2022 Apr 20;144(15):6703-6708
pubmed: 35389217
Science. 2018 Oct 12;362(6411):216-219
pubmed: 30309951
J Am Chem Soc. 2022 Mar 9;144(9):4206-4213
pubmed: 35192768
Phys Chem Chem Phys. 2006 Mar 7;8(9):1057-65
pubmed: 16633586
J Chem Phys. 2010 Dec 28;133(24):244103
pubmed: 21197972
J Am Chem Soc. 2016 Aug 3;138(30):9429-32
pubmed: 27457383
J Am Chem Soc. 2016 Mar 23;138(11):3863-75
pubmed: 26967114
J Chem Phys. 2016 Jun 7;144(21):214110
pubmed: 27276948
J Chem Theory Comput. 2022 Apr 12;18(4):2292-2307
pubmed: 35167304
J Am Chem Soc. 2015 Feb 11;137(5):1778-81
pubmed: 25636054
Angew Chem Int Ed Engl. 2016 Feb 18;55(8):2719-23
pubmed: 26804727
J Chem Theory Comput. 2019 May 14;15(5):2847-2862
pubmed: 30943025
J Chem Phys. 2020 Jun 14;152(22):224108
pubmed: 32534543
Chem Asian J. 2015 Oct;10(10):2112-6
pubmed: 25873417
J Comput Chem. 2003 Nov 15;24(14):1740-7
pubmed: 12964192
Angew Chem Int Ed Engl. 2009;48(24):4363-6
pubmed: 19437518
J Am Chem Soc. 2016 Nov 9;138(44):14740-14749
pubmed: 27779872
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
pubmed: 9944570
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11456-11459
pubmed: 28574220
J Am Chem Soc. 2015 Feb 11;137(5):2116-27
pubmed: 25629689
Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202301183
pubmed: 36994733
J Chem Phys. 2012 Apr 21;136(15):154101
pubmed: 22519309
Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202113204
pubmed: 34889494
J Am Chem Soc. 2021 Sep 15;143(36):14475-14481
pubmed: 34436899
J Am Chem Soc. 2021 Jan 20;143(2):675-680
pubmed: 33399449
J Org Chem. 2022 Feb 4;87(3):1710-1722
pubmed: 34634910
J Am Chem Soc. 2020 Feb 19;142(7):3613-3625
pubmed: 31984734
Chem Sci. 2019 Apr 8;10(20):5226-5234
pubmed: 31191877
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
Chem Soc Rev. 2017 Oct 2;46(19):5889-5902
pubmed: 28730207
Acc Chem Res. 2016 Apr 19;49(4):750-62
pubmed: 26967569
J Am Chem Soc. 2022 May 18;144(19):8460-8466
pubmed: 35523203
Nature. 2011 Feb 10;470(7333):245-9
pubmed: 21307938
Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4823-4832
pubmed: 33205853
Angew Chem Int Ed Engl. 2004 Mar 12;43(12):1566-8
pubmed: 15022235
J Chem Theory Comput. 2019 Jan 8;15(1):215-228
pubmed: 30495957
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):12761-12777
pubmed: 30840780
J Comput Chem. 2017 Jan 5;38(1):15-23
pubmed: 27761924
J Am Chem Soc. 2023 Feb 1;145(4):2093-2097
pubmed: 36688409
Chemistry. 2017 Aug 10;23(45):10853-10860
pubmed: 28597513
J Am Chem Soc. 2019 Feb 27;141(8):3414-3418
pubmed: 30768254
J Chem Phys. 2021 Sep 14;155(10):104109
pubmed: 34525816
Chem Sci. 2020 Apr 7;11(17):4381-4390
pubmed: 34122895
Phys Chem Chem Phys. 2020 Apr 14;22(14):7169-7192
pubmed: 32073075
Chem Sci. 2022 Nov 25;13(48):14366-14372
pubmed: 36545144
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
Chem Sci. 2022 Jul 4;13(30):8848-8859
pubmed: 35975151
J Chem Theory Comput. 2021 Jul 13;17(7):4250-4261
pubmed: 34185531
Chem Rev. 2011 Aug 10;111(8):5042-137
pubmed: 21707120
J Phys Chem B. 2009 May 7;113(18):6378-96
pubmed: 19366259
Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7424-7
pubmed: 16245265
J Org Chem. 2019 Nov 1;84(21):13221-13231
pubmed: 31550152
Acc Chem Res. 2016 Apr 19;49(4):763-73
pubmed: 27023677
Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13200-13203
pubmed: 27653018
Angew Chem Int Ed Engl. 2022 Oct 10;61(41):e202208908
pubmed: 35989224
Nature. 2012 Mar 14;483(7389):315-9
pubmed: 22422266
J Am Chem Soc. 2004 May 5;126(17):5356-7
pubmed: 15113196
Angew Chem Int Ed Engl. 2013 Jan 7;52(2):518-33
pubmed: 23280677
Chem Soc Rev. 2016 Nov 7;45(22):6093-6107
pubmed: 27722685
Angew Chem Int Ed Engl. 2020 Jul 20;59(30):12347-12351
pubmed: 32159921