Long latency reflexes of the median nerves in healthy adults.
long latency reflexes
median nerve
nerve conduction studies
neuropathy
neurophysiology
Journal
Muscle & nerve
ISSN: 1097-4598
Titre abrégé: Muscle Nerve
Pays: United States
ID NLM: 7803146
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
revised:
21
09
2023
received:
24
03
2023
accepted:
23
09
2023
medline:
22
11
2023
pubmed:
9
10
2023
entrez:
9
10
2023
Statut:
ppublish
Résumé
Long latency reflexes (LLRs) are late responses in nerve conduction studies seen after peripheral nerve stimulation during submaximal muscle contraction. They follow a short latency reflex, also known as the H reflex, and are thought to involve transcortical pathways, providing a measure of proximal nerve and central conduction. For this reason, they have been evaluated in several central nervous system diseases, but reference values are not widely published and are mostly based on old studies with very small numbers of participants. Therefore, in this work we aim to provide comprehensive reference values for LLR testing. LLRs were tested in a cohort of 100 healthy participants, testing the median nerve bilaterally. Mean latencies for short latency reflex (SLR), LLR1, LLR2, and LLR3 were 27.00, 38.50, 47.60, and 67.34 milliseconds, respectively. The allowable side-to-side difference was approximately 3 to 4 milliseconds. No significant sex-related differences were seen. Height correlated moderately with the SLR latency, but only weakly with LLR1, LLR2, and LLR3. This work provides normal LLR values for comparison with future studies in disease. The technique used may allow for improved evaluation of central nervous system or proximal peripheral nerve disorders.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
878-881Subventions
Organisme : Australian Government Research Training Program (RTP) Scholarship
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Hoffmann P. Ueber die Beziehungen der Sehnenreflexe zur willkürlichen Bewegung und zum Tonus. Z Biol. 1918;68:351-370.
Marsden CD, Merton PA, Morton HB. Is the human stretch reflex cortical rather than spinal? Lancet. 1973;301:759-761. doi:10.1016/s0140-6736(73)92141-7
Deuschl G, Lücking CH. Physiology and clinical applications of hand muscle reflexes. Electroencephalogr Clin Neurophysiol Suppl. 1990;41:84-101. doi:10.1016/b978-0-444-81352-7.50012-1
Deuschl G, Eisen A. Long-latency reflexes following electrical nerve stimulation. Electroencephalogr Clin Neurophysiol. 1999;52:263-268.
Kurusu K, Kitamura J. Long-latency reflexes in contracted hand and foot muscles and their relations to somatosensory evoked potentials and transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol. 1999;110:2014-2019.
Hunter JP, Ashby P, Lang AE. Afferents contributing to the exaggerated long latency reflex response to electrical stimulation in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1988;51:1405-1410. doi:10.1136/jnnp.51.11.1405
Scholz E, Diener HC, Noth J, Friedemann H. Medium and long latency EMG responses in leg muscles: Parkinson's disease. J Neurol Neurosurg Psychiatry. 1987;50:66-70.
Michels R, Wessel K, Klöhn S, Kömpf D. Long-latency reflexes, somatosensory evoked potentials and transcranial magnetic stimulation: relation of the three methods in multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1993;89:235-241. doi:10.1016/0168-5597(93)90101-t
Naumann M, Reiners K. Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin. Brain. 1997;120:409-416.
Bonfiglio L, Rossi B, Sartucci F. Prolonged intracortical delay of long-latency reflexes: electrophysiological evidence for a cortical dysfunction in multiple sclerosis. Brain Res Bull. 2006;69:606-613. doi:10.1016/j.brainresbull.2006.03.003
Estañol B, Sentíes-Madrid H. Increase of the H reflex amplitude and absence of long latency reflexes in the intrinsic hand muscles in patients with spasticity. Arch Neurosci. 2007;12:37-44.
Dhar D, Kamble N, Pal PK. Long latency reflexes in clinical neurology: a systematic review. Can J Neurol Sci. 2022;50:1-13. doi:10.1017/cjn.2022.270
Lee Y-C, Chen J-T, Liao K-K, Wu Z-A, Soong B-W. Prolonged cortical relay time of long latency reflex and central motor conduction in patients with spinocerebellar ataxia type 6. Clin Neurophysiol. 2003;114:458-462. doi:10.1016/s1388-2457(02)00378-4
Zhang W, Jasinarachchi M, Seiderer L, Szmulewicz DJ, Roberts LJ. The electrophysiological findings in spinocerebellar ataxia type 6: evidence from 24 patients. J Clin Neurophysiol. 2021;40:86-90. doi:10.1097/wnp.0000000000000855
Deuschl G, Schenck E, Lücking CH. Long-latency responses in human thenar muscles mediated by fast conducting muscle and cutaneous afferents. Neurosci Lett. 1985;55:361-366. doi:10.1016/0304-3940(85)90462-8
Knazan M, Bohlega S, Berry K, Eisen A. Acute sensory neuronopathy with preserved SEPs and long-latency reflexes. Muscle Nerve. 1990;13:381-384. doi:10.1002/mus.880130504
Tarkka I, Larsen T, Salmi T. Short and long latency cutaneo-muscular reflexes: a normative study. Electroencephalogr Clin Neurophysiol. 1987;27:155-161.
Eisen A, Bohlega S, Bloch M, Hayden M. Silent periods, long-latency reflexes and cortical MEPs in Huntington's disease and at-risk relatives. Electroencephalogr Clin Neurophysiol. 1989;74:444-449.
Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol. 1975;38:245-254. doi:10.1016/0013-4694(75)90245-x
Deuschl G, Ludolph A, Schenck E, Lücking CH. The relations between long-latency reflexes in hand muscles, somatosensory evoked potentials and transcranial stimulation of motor tracts. Electroencephalogr Clin Neurophysiol. 1989;74:425-430. doi:10.1016/0168-5597(89)90031-2
Upton ARM, McComas AJ, Sica REP. Potentiation of ‘late’ responses evoked in muscles during effort. J Neurol Neurosurg Psychiatry. 1971;34:699-711. doi:10.1136/jnnp.34.6.699
Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763-1768. doi:10.1213/ane.0000000000002864
Winkel A, Cook M, Roberts L. Optimising the technique for eliciting antidromic sural and superficial fibular sensory nerve action potentials. Muscle Nerve. 2023;67:469-473. doi:10.1002/mus.27817