Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper.
EAACI position paper
allergic diseases
hypersensitivity
nomenclature
pathophysiology and mechanism
Journal
Allergy
ISSN: 1398-9995
Titre abrégé: Allergy
Pays: Denmark
ID NLM: 7804028
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
01
09
2023
received:
12
08
2023
accepted:
05
09
2023
medline:
13
11
2023
pubmed:
10
10
2023
entrez:
10
10
2023
Statut:
ppublish
Résumé
The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2851-2874Informations de copyright
© 2023 European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Références
Lötvall J, Akdis CA, Bacharier LB, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355-360. doi:10.1016/j.jaci.2010.11.037
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. The concepts of asthma endotypes and phenotypes to guide current and novel treatment strategies. Expert Rev Respir Med. 2018;12(9):733-743. doi:10.1080/17476348.2018.1505507
Agache I, Akdis CA. Endotypes of allergic diseases and asthma: an important step in building blocks for the future of precision medicine. Allergol Int. 2016;65(3):243-252. doi:10.1016/j.alit.2016.04.011
Agache I, Eguiluz-Gracia I, Cojanu C, et al. Advances and highlights in asthma in 2021. Allergy. 2021;76(11):3390-3407. doi:10.1111/all.15054
Papadopoulos NG, Bernstein JA, Demoly P, et al. Phenotypes and endotypes of rhinitis and their impact on management: a PRACTALL report. Allergy. 2015;70(5):474-494. doi:10.1111/all.12573
Papadopoulos NG, Guibas GV. Rhinitis subtypes, endotypes, and definitions. Immunol Allergy Clin North Am. 2016;36(2):215-233. doi:10.1016/j.iac.2015.12.001
Segboer CL, Fokkens WJ, Terreehorst I, van Drunen CM. Endotyping of non-allergic, allergic and mixed rhinitis patients using a broad panel of biomarkers in nasal secretions. PloS One. 2018;13(7):e0200366. doi:10.1371/journal.pone.0200366
Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European academy of allergy and clinical immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131(6):1479-1490. doi:10.1016/j.jaci.2013.02.036
Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy. 2022;77(3):812-826. doi:10.1111/all.15074
Thijs JL, Strickland I, Bruijnzeel-Koomen CAFM, et al. Moving toward endotypes in atopic dermatitis: identification of patient clusters based on serum biomarker analysis. J Allergy Clin Immunol. 2017;140(3):730-737. doi:10.1016/j.jaci.2017.03.023
Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1-11. doi:10.1016/j.jaci.2018.10.032
Hui-Beckman JW, Goleva E, Berdyshev E, Leung DYM. Endotypes of atopic dermatitis and food allergy. J Allergy Clin Immunol. 2023;151(1):26-28. doi:10.1016/j.jaci.2022.07.021
Blank S, Grosch J, Ollert M, Bilò MB. Precision medicine in hymenoptera venom allergy: diagnostics, biomarkers, and therapy of different Endotypes and phenotypes. Front Immunol. 2020;22(11):579409. doi:10.3389/fimmu.2020.579409
Muraro A, Lemanske RF Jr, Castells M, et al. Precision medicine in allergic disease-food allergy, drug allergy, and anaphylaxis-PRACTALL document of the European academy of allergy and clinical immunology and the American Academy of Allergy, Asthma and Immunology. Allergy. 2017;72(7):1006-1021. doi:10.1111/all.13132
Agache I, Shamji MH, Kermani NZ, et al. Multidimensional endotyping using nasal proteomics predicts molecular phenotypes in the asthmatic airways. J Allergy Clin Immunol. 2023;151(1):128-137. doi:10.1016/j.jaci.2022.06.028
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493-1503. doi:10.1172/JCI124611
Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012;67(7):835-846. doi:10.1111/j.1398-9995.2012.02832.x
Dyjack N, Goleva E, Rios C, et al. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype. J Allergy Clin Immunol. 2018;141(4):1298-1309. doi:10.1016/j.jaci.2017.10.046
Shamji MH, Ollert M, Adcock IM, et al. EAACI guidelines on environmental science in allergic diseases and asthma-leveraging artificial intelligence and machine learning to develop a causality model in exposomics. Allergy. 2023;78:1742-1757. doi:10.1111/all.15667
Bendiner E. Baron von Pirquet: the aristocrat who discovered and defined allergy. Hosp Pract (off Ed). 1981;16(10):137-141.
Johansson SG, Hourihane JO, Bousquet J, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56(9):813-824. doi:10.1034/j.1398-9995.2001.t01-1-00001.x
Gell PG. Studies of undernutrition Wuppertal 1946-9. XI. Serological responses to antigenic stimuli. Spec Rep Ser Med Res Counc (G B). 1951;275:193-203.
Gell PG, Hinde IT. The histology of the tuberculin reaction and its modification by cortisone. Br J Exp Pathol. 1951;32(6):516-529.
Gell PG, Hinde IT. The effect of cortisone on the histology of the tuberculin reaction. Bull Schweiz Akad Med Wiss. 1952;8(1-2):200-202.
Coombs PR, Gell PG. Classification of allergic reactions responsible for clinical hypersensitivity and disease. In: Gell RR, ed. Clinical Aspects of Immunology. Oxford University Press; 1968:575-596.
Johansson SG, Bieber T, Dahl R, et al. Revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832-836. doi:10.1016/j.jaci.2003.12.591
Del Prete GF, De Carli M, Mastromauro C, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest. 1991;88(1):346-350. doi:10.1172/JCI115300
Wierenga EA, Snoek M, Jansen HM, Bos JD, van Lier RA, Kapsenberg ML. Human atopen-specific types 1 and 2 T helper cell clones. J Immunol. 1991;147(9):2942-2949.
Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326(5):298-304. doi:10.1056/NEJM199201303260504
Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003;139(8):683-693. doi:10.7326/0003-4819-139-8-200310210-00012
Posadas SJ, Pichler WJ. Delayed drug hypersensitivity reactions-new concepts. Clin Exp Allergy. 2007;37(7):989-999. doi:10.1111/j.1365-2222.2007.02742.x
Hausmann O, Schnyder B, Pichler WJ. Drug hypersensitivity reactions involving skin. Handb Exp Pharmacol. 2010;196:29-55. doi:10.1007/978-3-642-00663-0_2
Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605. doi:10.1111/all.14318
Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135(3):626-635. doi:10.1016/j.jaci.2014.11.001
Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020;75(12):3100-3111. doi:10.1111/all.14632
Zheng H, Zhang Y, Pan J, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. doi:10.3389/fimmu.2021.586078
Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: state-of-the-art review of therapies and theratypes. J Allergy Clin Immunol. 2022;150(6):1279-1288. doi:10.1016/j.jaci.2022.10.007
Simons FE, Ardusso LR, Bilò MB, et al. World allergy organization guidelines for the assessment and management of anaphylaxis. World Allergy Organ J. 2011;4(2):13-37. doi:10.1097/WOX.0b013e318211496c
Cardona V, Ansotegui IJ, Ebisawa M, et al. World allergy organization anaphylaxis guidance 2020. World Allergy Organ J. 2020;13(10):100472. doi:10.1016/j.waojou.2020.100472
Justiz Vaillant AA, Vashisht R, Zito PM. Immediate hypersensitivity reactions. StatPearls [Internet]. StatPearls Publishing; 2022.
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol. 2019;348:1-68. doi:10.1016/bs.ircmb.2019.07.004
Gauvreau GM, Bergeron C, Boulet LP, et al. Sounding the alarmins-the role of alarmin cytokines in asthma. Allergy. 2023;78(2):402-417. doi:10.1111/all.15609
Saito K, Orimo K, Kubo T, et al. Laundry detergents and surfactants induced eosinophilic airway inflammation by increasing IL-33 expression and activating ILC2s. Allergy. 2023;78:1878-1892. doi:10.1111/all.15762
Möller KJ, Wegner L, Malsy J, et al. Expanded ILC2s in human infant intestines promote tissue-growth. Mucosal Immunol. 2023;16(4):408-421. doi:10.1016/j.mucimm.2023.04.004
Pelly VS, Kannan Y, Coomes SM, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9(6):1407-1417. doi:10.1038/mi.2016.4
Jin J, Sunusi S, Lu H. Group 2 innate lymphoid cells (ILC2s) are important in typical type 2 immune-mediated diseases and an essential therapeutic target. J Int Med Res. 2022;50(1):3000605211053156. doi:10.1177/03000605211053156
Varricchi G, Bencivenga L, Poto R, Pecoraro A, Shamji MH, Rengo G. The emerging role of T follicular helper (TFH) cells in aging: influence on the immune frailty. Ageing Res Rev. 2020;61:101071. doi:10.1016/j.arr.2020.101071
Akdis CA, Blesken T, Akdis M, Wüthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest. 1998;102(1):98-106. doi:10.1172/JCI2250
Jutel M, Akdis M, Budak F, et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol. 2003;33(5):1205-1214. doi:10.1002/eji.200322919
Nouri-Aria KT, Wachholz PA, Francis JN, et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol. 2004;172(5):3252-3259. doi:10.4049/jimmunol.172.5.3252
van de Veen W, Stanic B, Yaman G, et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol. 2013;131(4):1204-1212. doi:10.1016/j.jaci.2013.01.014
Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019;143(6):2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018
Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh) cells in normal immune responses and in allergic disorders. Allergy. 2016;71(8):1086-1094. doi:10.1111/all.12878
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569. doi:10.3389/fimmu.2014.00569
Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S73-S80. doi:10.1016/j.jaci.2009.11.017
Bellinghausen I, Khatri R, Saloga J. Current strategies to modulate regulatory T cell activity in allergic inflammation. Front Immunol. 2022;13:912529. doi:10.3389/fimmu.2022.912529
Qin L, Tang LF, Cheng L, Wang HY. The clinical significance of allergen-specific IgG4 in allergic diseases. Front Immunol. 2022;13:1032909. doi:10.3389/fimmu.2022.1032909
Pilette C, Nouri-Aria KT, Jacobson MR, et al. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol. 2007;178(7):4658-4666. doi:10.4049/jimmunol.178.7.4658
Gigon L, Fettrelet T, Yousefi S, Simon D, Simon HU. Eosinophils from a to Z. Allergy. 2023;78(7):1810-1846. doi:10.1111/all.15751
Lee E, Kim M, Jeon K, et al. Mean platelet volume, platelet distribution width, and platelet count, in connection with immune thrombocytopenic purpura and essential thrombocytopenia. Lab Med. 2019;50(3):279-285. doi:10.1093/labmed/lmy082
Li TX, Sun FT, Ji BJ. Correlation of IgG subclass with blood cell parameters in patients with autoimmune hemolytic anemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2019;27(1):197-201. doi:10.7534/j.issn.1009-2137.2019.01.032
Leonard A, Hittson Boal L, Pary P, et al. Identification of red blood cell antibodies in maternal breast milk implicated in prolonged hemolytic disease of the fetus and newborn. Transfusion. 2019;59(4):1183-1189. doi:10.1111/trf.15154
Vries TB, Boerma S, Doornebal J, Dikkeschei B, Stegeman C, Veneman TF. Goodpasture's syndrome with negative anti-glomerular basement membrane antibodies. Eur J Case Rep Intern Med. 2017;4(8):000687. doi:10.12890/2017_000687
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368. doi:10.3389/fimmu.2015.00368
Sauler M, Bazan IS, Lee PJ. Cell death in the lung: the apoptosis-necroptosis Axis. Annu Rev Physiol. 2019;81:375-402. doi:10.1146/annurev-physiol-020518-114320
Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (review). Int J Mol Med. 2021;47(5):89. doi:10.3892/ijmm.2021.4922
Bajwa SF. Mohammed RH. Type II hypersensitivity reaction. StatPearls [Internet]. StatPearls Publishing; 2023.
Usman N, Annamaraju P. Type III hypersensitivity reaction. StatPearls [Internet]. StatPearls Publishing; 2022.
Ramos BF, Zhang Y, Jakschik BA. Neutrophil elicitation in the reverse passive Arthus reaction. Complement-dependent and -independent mast cell involvement. J Immunol. 1994;152(3):1380-1384.
Sylvestre DL, Ravetch JV. A dominant role for mast cell fc receptors in the Arthus reaction. Immunity. 1996;5(4):387-390. doi:10.1016/s1074-7613(00)80264-2
Sylvestre DL, Ravetch JV. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science. 1994;265(5175):1095-1098. doi:10.1126/science.8066448
Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2016;6:620. doi:10.3389/fimmu.2015.00620
Shushakova N, Skokowa J, Schulman J, et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest. 2002;110(12):1823-1830. doi:10.1172/JCI16577
Romano A, Valluzzi RL, Caruso C, Maggioletti M, Gaeta F. Non-immediate cutaneous reactions to Beta-lactams: approach to diagnosis. Curr Allergy Asthma Rep. 2017;17(4):23. doi:10.1007/s11882-017-0691-4
Pan J, Zhang M, Wang J, et al. Interferon-gamma is an autocrine mediator for dendritic cell maturation. Immunol Lett. 2004;94(1-2):141-151. doi:10.1016/j.imlet.2004.05.003
McLaughlin TA, Khayumbi J, Ongalo J, et al. CD4 T cells in Mycobacterium tuberculosis and Schistosoma mansoni Co-infected individuals maintain functional TH1 responses. Front Immunol. 2020;11:127. doi:10.3389/fimmu.2020.00127
Seillet C, Belz GT, Huntington ND. Development, homeostasis, and heterogeneity of NK cells and ILC1. Curr Top Microbiol Immunol. 2016;395:37-61. doi:10.1007/82_2015_474
Trautmann A, Akdis M, Kleemann D, et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest. 2000;106(1):25-35. doi:10.1172/JCI9199
Trautmann A, Schmid-Grendelmeier P, Krüger K, et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol. 2002;109(2):329-337. doi:10.1067/mai.2002.121460
Preglej T, Hamminger P, Luu M, et al. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight. 2020;5(4):e133393. doi:10.1172/jci.insight.133393
Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017;8(6):e2836. doi:10.1038/cddis.2017.67
Valkenburg SA, Gras S, Guillonneau C, et al. Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. PLoS Pathog. 2010;6(8):e1001039. doi:10.1371/journal.ppat.1001039
Zimmermann M, Koreck A, Meyer N, et al. TNF-like weak inducer of apoptosis (TWEAK) and TNF-α cooperate in the induction of keratinocyte apoptosis. J Allergy Clin Immunol. 2011;127(1):200-207. doi:10.1016/j.jaci.2010.11.005
Rebane A, Zimmermann M, Aab A, et al. Mechanisms of IFN-γ-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129(5):1297-1306. doi:10.1016/j.jaci.2012.02.020
Valente M, Dölen Y, van Dinther E, et al. Cross-talk between iNKT cells and CD8 T cells in the spleen requires the IL-4/CCL17 axis for the generation of short-lived effector cells. Proc Natl Acad Sci U S A. 2019;116(51):25816-25827. doi:10.1073/pnas.1913491116
Eguiluz-Gracia I, Layhadi JA, Rondon C, Shamji MH. Mucosal IgE immune responses in respiratory diseases. A-Curr Opin Pharmacol. 2019;46:100-107. doi:10.1016/j.coph.2019.05.009
Fahy JV. Type 2 inflammation in asthma-Present in most, absent in many. Nat Rev Immunol. 2015;15(1):57-65. doi:10.1038/nri3786
Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: the “itchy” cytokine in inflammation and therapy. Allergy. 2021;76(10):2982-2997. doi:10.1111/all.14791
Garcovich S, Maurelli M, Gisondi P, Peris K, Yosipovitch G, Girolomoni G. Pruritus as a distinctive feature of type 2 inflammation. Vaccines (Basel). 2021;9(3):303. doi:10.3390/vaccines9030303
Abdelaziz MH, Wang H, Cheng J, Xu H. Th2 cells as an intermediate for the differentiation of naïve T cells into Th9 cells, associated with the Smad3/Smad4 and IRF4 pathway. Exp Ther Med. 2020;19(3):1947-1954. doi:10.3892/etm.2020.8420
Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15(5):295-307. doi:10.1038/nri3824
Starkey MR, McKenzie AN, Belz GT, Hansbro PM. Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol. 2019;12(2):299-311. doi:10.1038/s41385-018-0130-4
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy. 2021;76(11):3332-3348. doi:10.1111/all.14863
Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017;139(1):93-103. doi:10.1016/j.jaci.2016.03.050
Sugita K, Steer CA, Martinez-Gonzalez I, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol. 2018;141(1):300-310.e11. doi:10.1016/j.jaci.2017.02.038
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine. 2015;75(1):14-24. doi:10.1016/j.cyto.2015.05.010
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy. 2021;76(6):1693-1706. doi:10.1111/all.14662
Akdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984-1010. doi:10.1016/j.jaci.2016.06.033
Hancock A, Armstrong L, Gama R, Millar A. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol. 1998;18(1):60-65. doi:10.1165/ajrcmb.18.1.2627
Bochner BS. Systemic activation of basophils and eosinophils: markers and consequences. J Allergy Clin Immunol. 2000;106(5 Suppl):S292-S302. doi:10.1067/mai.2000.110164
Valent P, Klion AD, Roufosse F, et al. Proposed refined diagnostic criteria and classification of eosinophil disorders and related syndromes. Allergy. 2023;78(1):47-59. doi:10.1111/all.15544
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: focus on DNA extracellular traps. Life Sci. 2022;311(Pt B):121191. doi:10.1016/j.lfs.2022.121191
Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by Glutaminase-dependent metabolism. Cell. 2018;175(7):1780-1795.e19. doi:10.1016/j.cell.2018.10.001
Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi:10.1038/s41577-022-00746-9
Tamassia N, Arruda-Silva F, Wright HL, et al. Human neutrophils activated via TLR8 promote Th17 polarization through IL-23. J Leukoc Biol. 2019;105(6):1155-1165. doi:10.1002/JLB.MA0818-308R
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev. 2022;31(163):210241. doi:10.1183/16000617.0241-2021
Croxatto D, Micheletti A, Montaldo E, et al. Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol. 2016;9(6):1372-1383. doi:10.1038/mi.2016.10
Pichler WJ, Hausmann O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int Arch Allergy Immunol. 2016;171(3-4):166-179. doi:10.1159/000453265
Czarnowicki T, Gonzalez J, Shemer A, et al. Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population. J Allergy Clin Immunol. 2015;136(1):104-115.e7. doi:10.1016/j.jaci.2015.01.020
Jones CP, Gregory LG, Causton B, Campbell GA, Lloyd CM. Activin a and TGF-β promote T(H)9 cell-mediated pulmonary allergic pathology. J Allergy Clin Immunol. 2012;129(4):1000-10.e3. doi:10.1016/j.jaci.2011.12.965
Lu LF, Lind EF, Gondek DC, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 2006;442(7106):997-1002. doi:10.1038/nature05010
Licona-Limón P, Henao-Mejia J, Temann AU, et al. Th9 cells drive host immunity against gastrointestinal Worm infection. Immunity. 2013;39(4):744-757. doi:10.1016/j.immuni.2013.07.020
Xiao X, Balasubramanian S, Liu W, et al. OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol. 2012;13(10):981-990. doi:10.1038/ni.2390
Elyaman W, Bradshaw EM, Uyttenhove C, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A. 2009;106(31):12885-12890. doi:10.1073/pnas.0812530106
Dugas B, Renauld JC, Pène J, et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol. 1993;23(7):1687-1692. doi:10.1002/eji.1830230743
Matsuzawa S, Sakashita K, Kinoshita T, Ito S, Yamashita T, Koike K. IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J Immunol. 2003;170(7):3461-3467. doi:10.4049/jimmunol.170.7.3461
Nakagome K, Imamura M, Kawahata K, et al. High expression of IL-22 suppresses antigen-induced immune responses and eosinophilic airway inflammation via an IL-10-associated mechanism. J Immunol. 2011;187(10):5077-5089. doi:10.4049/jimmunol.1001560
Johnson JR, Nishioka M, Chakir J, et al. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res. 2013;14(1):118. doi:10.1186/1465-9921-14-118
Pennino D, Bhavsar PK, Effner R, et al. IL-22 suppresses IFN-γ-mediated lung inflammation in asthmatic patients. J Allergy Clin Immunol. 2013;131(2):562-570. doi:10.1016/j.jaci.2012.09.036
Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747-785. doi:10.1146/annurev-immunol-032414-112123
Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy. 2018;73(12):2290-2305. doi:10.1111/all.13628
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739-751. doi:10.1038/s41577-021-00538-7
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol. 2017;139(6):1752-1761. doi:10.1016/j.jaci.2017.04.010
Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353.e21. doi:10.1016/j.cell.2016.10.043
Parrish A, Boudaud M, Kuehn A, Ollert M, Desai MS. Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends Mol Med. 2022;28(1):36-50. doi:10.1016/j.molmed.2021.10.004
Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446. doi:10.1038/ng1767
Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315-1327. doi:10.1056/NEJMra1011040
Nakamura M, Kamiya K, Furuhata A, Ikeda K, Niyonsaba F. S100A7 Co-localization and up-regulation of Filaggrin in human Sinonasal epithelial cells. Curr Med Sci. 2021;41(5):863-868. doi:10.1007/s11596-021-2431-1
Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-1096.e10. doi:10.1016/j.jaci.2012.05.052
de Kleer IM, Kool M, de Bruijn MJ, et al. Perinatal activation of the Interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 2016;45(6):1285-1298. doi:10.1016/j.immuni.2016.10.031
Hiraishi Y, Yamaguchi S, Yoshizaki T, et al. IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep. 2018;8(1):18052. doi:10.1038/s41598-018-36440-x
Steelant B, Farré R, Wawrzyniak P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 2016;137(4):1043-1053.e5. doi:10.1016/j.jaci.2015.10.050
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418-1449. doi:10.1111/all.15240
Moloudizargari M, Moradkhani F, Asghari N, et al. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants. Life Sci. 2019 Aug;15(231):116585. doi:10.1016/j.lfs.2019.116585
Doyle AD, Masuda MY, Pyon GC, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78(1):192-201. doi:10.1111/all.15457
Haahtela T, Holgate S, Pawankar R, et al. WAO special committee on climate change and biodiversity. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J. 2013;6(1):3. doi:10.1186/1939-4551-6-3
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219-232. doi:10.1038/nri.2017.7
Wood LG. Asthma in the obese: a big and growing problem. Am J Respir Crit Care Med. 2017;195(1):4-5. doi:10.1164/rccm.201608-1582ED
Forno E, Han YY, Mullen J, Celedón JC. Overweight, obesity, and lung function in children and adults-a meta-analysis. J Allergy Clin Immunol Pract. 2018;6(2):570-581.e10. doi:10.1016/j.jaip.2017.07.010
Sharma V, Cowan DC. Obesity, inflammation, and severe asthma: an update. Curr Allergy Asthma Rep. 2021;21(12):46. doi:10.1007/s11882-021-01024-9
Sunadome H, Matsumoto H, Izuhara Y, et al. Correlation between eosinophil count, its genetic background and body mass index: the Nagahama study. Allergol Int. 2020;69(1):46-52. doi:10.1016/j.alit.2019.05.012
Zheng H, Wu D, Wu X, et al. Leptin promotes allergic airway inflammation through targeting the unfolded protein response pathway. Sci Rep. 2018;8(1):8905. doi:10.1038/s41598-018-27278-4
Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites. Front Immunol. 2021;5(12):746151. doi:10.3389/fimmu.2021.746151
Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019;10(1):5711. doi:10.1038/s41467-019-13751-9
Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol. 2012;590(3):441-446. doi:10.1113/jphysiol.2011.222133
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207-215. doi:10.1016/S2213-8587(14)70134-2
Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy. 2014;69(3):273-281. doi:10.1111/all.12330
Barcik W, Pugin B, Brescó MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy. 2019;74(5):899-909. doi:10.1111/all.13709
Jutel M, Watanabe T, Klunker S, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature. 2001;413(6854):420-425. doi:10.1038/35096564
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: unravelling the molecular tango. Allergy. 2022;77(12):3513-3526. doi:10.1111/all.15455
Kowalski ML, Asero R, Bavbek S, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 2013;68(10):1219-1232. doi:10.1111/all.12260
Doña I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs. Sci Rep. 2018;8(1):16710. doi:10.1038/s41598-018-34668-1
Doña I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy. 2019;74(6):1135-1144. doi:10.1111/all.13725
Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-exacerbated respiratory disease (N-ERD)-a EAACI position paper. Allergy. 2019;74(1):28-39. doi:10.1111/all.13599
Taniguchi M, Mitsui C, Hayashi H, et al. Aspirin-exacerbated respiratory disease (AERD): current understanding of AERD. Allergol Int. 2019;68(3):289-295. doi:10.1016/j.alit.2019.05.001
White AA, Stevenson DD. Aspirin-exacerbated respiratory disease. N Engl J Med. 2018;379(11):1060-1070. doi:10.1056/NEJMra1712125
Hybar H, Saki N, Maleknia M, Moghaddasi M, Bordbar A, Naghavi M. Aspirin exacerbated respiratory disease (AERD): molecular and cellular diagnostic & prognostic approaches. Mol Biol Rep. 2021;48(3):2703-2711. doi:10.1007/s11033-021-06240-0
Lyly A, Laidlaw TM, Lundberg M. Pathomechanisms of AERD-recent advances. Front Allergy. 2021;2:734733. doi:10.3389/falgy.2021.734733
Kohanski MA, Cohen NA, Barrett NA. Epithelial dysregulation in chronic rhinosinusitis with nasal polyposis (CRSwNP) and aspirin-exacerbated respiratory disease (AERD). J Allergy Clin Immunol. 2021;148(5):1161-1164. doi:10.1016/j.jaci.2021.07.034
Zhang T, Che D, Liu R, et al. Typical antimicrobials induce mast cell degranulation and anaphylactoid reactions via MRGPRX2 and its murine homologue MRGPRB2. Eur J Immunol. 2017;47(11):1949-1958. doi:10.1002/eji.201746951
Fujisawa D, Kashiwakura J, Kita H, et al. Expression of mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol. 2014;134(3):622-633.e9. doi:10.1016/j.jaci.2014.05.004
McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237-241. doi:10.1038/nature14022
da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698-738. doi:10.1369/0022155414545334
Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2003;111(2 Suppl):S486-S494. doi:10.1067/mai.2003.120
Jutel M, Mosnaim GS, Bernstein JA, et al. The one health approach for allergic diseases and asthma. Allergy. 2023;78(7):1777-1793. doi:10.1111/all.15755