Changes in species diversity along the ephemeral streams in eastern Mediterranean Mountainous Ecosystem, a case study for Ahir Mountain (Kahramanmaraş-Türkiye).
Environmental variables
Ephemeral streams
IVI values
Species diversity
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
11 Oct 2023
11 Oct 2023
Historique:
received:
26
07
2023
accepted:
11
09
2023
medline:
2
11
2023
pubmed:
11
10
2023
entrez:
10
10
2023
Statut:
epublish
Résumé
Ephemeral streams are important habitats that support biodiversity, especially in mountainous ecosystems in arid and semi-arid regions, and are among those that will be most affected by global climate change. This study aimed to examine the trends in plant species diversity of ephemeral stream beds and their relationship with environmental variables (aspect, elevation, soil) in the eastern Mediterranean region.For this purpose, 40 sample plots were applied in the valley cross sections of the ephemeral stream beds (valley bottom, side and ridge) on two main slopes (north and south) in 2019. The abundance values of plant species were determined and the number of individuals in each sample plot was counted. In addition, soil samples were taken at a depth of 0-30 cm and analyzed. With the data obtained, the importance value index of all species was calculated, and the diversity and species richness of the sample plots were determined.A total of 130 plant taxa were identified in the study area. The most dominant species were Astragalus kurdicus (IVI value: 25.97), Helichrysum plicatum (21.94), Taeniatherum caput-medusae subsp. crinitum (15.51), Hordeum bulbosum (15.33), Bromus erectus (15.32), and Minuartia juniperina (14.14). Both plant richness and endemism rate showed a significant relationship with increasing elevation. Plant diversity values of south-facing slopes were higher (2.23) than those of north-facing slopes (2.21). In addition, we found that phosphorus is an important factor in the distribution of plant species along the ephemeral stream beds, and as the amount of phosphorus increases, species richness and diversity also increase.
Identifiants
pubmed: 37816951
doi: 10.1007/s10661-023-11869-4
pii: 10.1007/s10661-023-11869-4
doi:
Substances chimiques
Soil
0
Phosphorus
27YLU75U4W
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1288Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Abdel Rahman, A. A., & Batanouny, K. H. (1959). Root development and establishment under desert conditions. Bull Inst Desert d’Egypte, 9, 41–50.
AbdelRahman, M. A. E. (2023). An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali, 34, 767–808. https://doi.org/10.1007/s12210-023-01155-3
doi: 10.1007/s12210-023-01155-3
Acuña, V., Hunter, M., & Ruhí, A. (2017). Managing temporary streams and rivers as unique rather than second-class ecosystems. Biological Conservation, 211, 12–19. https://doi.org/10.1016/j.biocon.2016.12.025
doi: 10.1016/j.biocon.2016.12.025
Al-Amro, A. M., & Al-Qahtani, S. M. (2022). Plant diversity in Sabkha ecosystems of arid region: Spatial and environmental drivers. Brazilian Journal of Biology, 82, e262331. https://doi.org/10.1590/1519-6984.262331
doi: 10.1590/1519-6984.262331
Al-Rowaily, S. L., El-Bana, M. I., & Al-Dujain, F. A. (2012). Changes in vegetation composition and diversity in relation to morphometry, soil and grazing on a hyper-arid watershed in the central Saudi Arabia. Catena, 97, 41–49. https://doi.org/10.1016/j.catena.2012.05.004
doi: 10.1016/j.catena.2012.05.004
Arce, M. I., Mendoza-Lera, C., Almagro, M., Catalán, N., Romaní, A. M., Martí, E., et al. (2019). A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Science Reviews, 188, 441–453. https://doi.org/10.1016/j.earscirev.2018.12.001
doi: 10.1016/j.earscirev.2018.12.001
Aytaç, Z., & Duman, H. (2005). The Steppic flora of high mounts Ahir, Oksus and Binboga (Kahramanmaras, Kayseri, Turkey). Flora Mediterr, 15, 121–178.
Bagnouls, F., & Gaussen, H. (1957). Les climats biologiques et leur classification. Annales de Géographie, 66, 193–220.
doi: 10.3406/geo.1957.18273
Beniston, M. (Ed.). (1994). Mountain environments in changing climates (p. 496). Routledge.
Billings, W. D. (1974). In J. D. Ives & R. G. Barry (Eds.), Arctic and alpine vegetation: Plant adaptations to cold summer climates (pp. 403–444).
Bolpagni, R., Bartoli, M., & Viaroli, P. (2013). Species and functional plant diversity in a heavily impacted riverscape: Implications for threatened hydro-hygrophilous flora conservation. Limnologica, 43(4), 230–238. https://doi.org/10.1016/j.limno.2012.11.001
doi: 10.1016/j.limno.2012.11.001
Borisade, T. V., & Odiwe, A. I. (2023). Floristic composition, structure and diversity of riparian forests in southwestern Nigeria: Conservation is inevitable. Nordic Journal of Botany, 2023(3), e03723. https://doi.org/10.1111/njb.03723
doi: 10.1111/njb.03723
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.
doi: 10.2134/agronj1962.00021962005400050028x
Bridson, D., & Forman, L. (1998). The Herbarium handbook (third ed.). Royal Botanic Garden.
Brundu, G., Aksoy, N., Brunel, S., Eliáš, P., & Fried, G. (2011). Rapid surveys for inventorying alien plants in the Black Sea region of Turkey. EPPO Bulletin, 41(2), 208–216. https://doi.org/10.1111/j.1365-2338.2011.02455.x
doi: 10.1111/j.1365-2338.2011.02455.x
Bruno, D., Belmar, O., Sánchez-Fernández, D., & Velasco, J. (2014). Environmental determinants of woody and herbaceous riparian vegetation patterns in a semi-arid Mediterranean basin. Hydrobiologia, 730, 45–57. https://doi.org/10.1007/s10750-014-1822-8
doi: 10.1007/s10750-014-1822-8
Calhoun, A. J., Mushet, D. M., Bell, K. P., Boix, D., Fitzsimons, J. A., & Isselin-Nondedeu, F. (2017). Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation, 211, 3–11. https://doi.org/10.1016/j.biocon.2016.11.024
doi: 10.1016/j.biocon.2016.11.024
Cambrollé, J., Muñoz-Vallés, S., Mancilla-Leytón, J. M., Andrades-Moreno, L., Luque, T., & Figueroa, M. E. (2015). Effects of soil physicochemical properties on plant performance of Glaucium flavum Crantz. Plant and Soil, 386, 185–193. https://doi.org/10.1007/s11104-014-2258-7
doi: 10.1007/s11104-014-2258-7
CEPF (2021). https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined#:~:text=There%20are%20 currently%2036%20recognized,as%20%22endemic%22%20species.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., et al. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972–980. https://doi.org/10.1038/s41558-018-0299-2
doi: 10.1038/s41558-018-0299-2
Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31, 434–455. https://doi.org/10.2307/1931497
doi: 10.2307/1931497
Datry, T., Larned, S. T., & Tockner, K. (2014). Intermittent rivers: A challenge for freshwater ecology. BioScience, 64(3), 229–235. https://doi.org/10.1093/biosci/bit027
doi: 10.1093/biosci/bit027
Davis, P. H. (1965). Flora of Turkey and the East Aegean Islands, I-IX. University Press.
Davis, P. H., Mill, R. R., & Tan, K. (1988). Flora of Turkey and the East Aegean Islands, X, Supplement (p. 600). University Press, Edinburgh.
De Martonne, E. (1926). Une nouvelle fanction climatologique: l’indice d’aridité. La Météorologie, 2, 449–458.
Di Biase, L., Pace, L., Mantoni, C., & Fattorini, S. (2021). Variations in plant richness, biogeographical composition, and life forms along an elevational gradient in a Mediterranean mountain. Plants, 10(10), 2090. https://doi.org/10.3390/plants10102090
doi: 10.3390/plants10102090
Djamali, M., Brewer, S., Breckle, S. W., & Jackson, S. T. (2012). Climatic determinism in phytogeographic regionalization: A test from the Irano-Turanian region, SW and Central Asia. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(4), 237–249. https://doi.org/10.1016/j.flora.2012.01.009
doi: 10.1016/j.flora.2012.01.009
Dönmez, A. A., & Yerli, S. V. (2018). Biodiversity in Turkey. Global Biodiversity, 2, 397–442. https://doi.org/10.1201/9780429487750-11
doi: 10.1201/9780429487750-11
Egan, P. A., & Price, M. F. (2017). Mountain Ecosystem Services and Climate Change A Global Overview of Potential Threats and Strategies for Adaptation. UNESCO Publishing.
Ghafari, S., Ghorbani, A., Moameri, M., Mostafazadeh, R., Bidarlord, M., & Kakehmami, A. (2020). Floristic diversity and distribution patterns along an elevational gradient in the northern part of the Ardabil province rangelands, Iran. Mountain Research and Development, 40(1), R37. https://doi.org/10.1659/MRD-JOURNAL-D-18-00089.1
doi: 10.1659/MRD-JOURNAL-D-18-00089.1
Gomaa, N. H. (2014). Microhabitat variations and seed bank-vegetation relationships in a desert wadi ecosystem. Flora-Morphology, Distribution, Functional Ecology of Plants, 209(12), 725–732. https://doi.org/10.1016/j.flora.2014.09.004
doi: 10.1016/j.flora.2014.09.004
Gomes, P. I., Wai, O. W., & Dehini, G. K. (2020). Vegetation dynamics of ephemeral and perennial streams in mountainous headwater catchments. Journal of Mountain Science, 17(7), 1684–1695. https://doi.org/10.1007/s11629-017-4640-4
doi: 10.1007/s11629-017-4640-4
Guisan, A., Holten, J. I., Spichiger, R., & Tessier, L. (Eds.). (1995). Potential ecological impacts of climate change in the Alps and Fennoscandian mountains (p. 194). Conservatoire et Jardin botaniques.
Gülçur, F. (1974). Toprağın Fiziksel ve Kimyasal Analiz Metodları. İ.Ü. Orman Fakültesi Yayınları, O.F. Yayın No: 201, Kurtuluş Matbaası, 225 s., İstanbul
Güner, A., Aslan, S., Ekim, T., Vural, M., & Babaç, M. T. (Eds.). (2012). Türkiye Bitkileri Listesi (Damarlı Bitkiler) (p. 2012). Istanbul.
Güner, A., Özhatay, N., Ekim, T., & Başer, K.H.C. (2000). Flora of Turkey and the East Aegean Islands, XI, Supplement –II. University Press, Edinburgh, 656
Hailu, H. (2017). Analysis of vegetation phytosociological characteristics and soil physico-chemical conditions in Harishin Rangelands of Eastern Ethiopia. Land, 6(1), 4. https://doi.org/10.3390/land6010004
doi: 10.3390/land6010004
Henderson, P. A., & Seaby, R. M. H. (1999). Community Analysis Package (CAP) version 1.41 UK. Pisces Conservation Ltd. IRC House.
Idowu, G. A., Olonimoyo, E. A., Idowu, A. M., & Aiyesanmi, A. F. (2020). Impact of gas and oil-fired power plants on proximal water and soil environments: Case study of Egbin power plant, Ikorodu, Lagos State, Nigeria. SN Applied Sciences, 2, 1–11. https://doi.org/10.1007/s42452-020-3150-0
doi: 10.1007/s42452-020-3150-0
Jackson, M. L. (1962). Soil Chemical Analysis (p. 498). Constable and Company Ld..
Jiang, M., Deng, H., Cai, Q., & Wu, G. (2005). Species richness in a riparian plant community along the banks of the Xiangxi River, the Three Gorges region. The International Journal of Sustainable Development & World Ecology, 12(1), 60–67. https://doi.org/10.1080/13504500509469619
doi: 10.1080/13504500509469619
Jones, M. M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D. B., & Olivas, P. C. (2008). Explaining variation in tropical plant community composition: Influence of environmental and spatial data quality. Oecologia, 155, 593–604. https://doi.org/10.1007/s00442-007-0923-8
doi: 10.1007/s00442-007-0923-8
Kapos, V., Rhind, J., Edwards, M., Price, M. F., & Ravilious, C. (2000). Developing a map of the world's mountain forests. In Forests in sustainable mountain development: A state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development (pp. 4–19). Cabi Publishing. https://doi.org/10.1079/9780851994468.0004
doi: 10.1079/9780851994468.0004
Kenar, N., Şekerciler, F., & Çoban, S. (2020). The phytosociology, ecology, and plant diversity of new plant communities in Central Anatolia (Turkey). Hacquetia, 19(1), 1–22. https://doi.org/10.2478/hacq-2019-0014
doi: 10.2478/hacq-2019-0014
Kienast, F., Wildi, O., & Brzeziecki, B. (1998). Potential impacts of climate change on species richness in mountain forests—An ecological risk assessment. Biological Conservation, 83(3), 291–305. https://doi.org/10.1016/S0006-3207(97)00085-2
doi: 10.1016/S0006-3207(97)00085-2
Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems; with 47 tables. Springer Science & Business Media.
doi: 10.1007/978-3-642-18970-8
Körner, C. (2004). Mountain biodiversity, its causes and function. AMBIO: A Journal of the Human Environment, 13, 11–17.
doi: 10.1007/0044-7447-33.sp13.11
Körner, C., & Ohsawa, M. (2005). Mountain systems. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: Current state and trends. Island Press.
Körner, C., & Paulsen, J. (2017). A geostatistical and bioclimatological comparison of the Central Great Caucasus and the central Alps. In G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn (Eds.), Plant diversity in the Central Great Caucasus: a quantitative assessment (pp. 1–9). Switzerland, Cham: Springer.
Körner, C., Paulsen, J., & Spehn, E. M. (2011). A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 121, 73–78. https://doi.org/10.1007/s00035-011-0094-4
doi: 10.1007/s00035-011-0094-4
Larned, S. T., Datry, T., Arscott, D. B., & Tockner, K. (2010). Emerging concepts in temporary-river ecology. Freshwater Biology, 55(4), 717–738. https://doi.org/10.1111/j.1365-2427.2009.02322.x
doi: 10.1111/j.1365-2427.2009.02322.x
Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785–813.
doi: 10.1016/j.jaridenv.2005.03.026
M.A.F. (2023). Republic of Turkey Ministry of Agriculture and Forestry, Noah’s ark national biodiversity database. https://nuhungemisi.tarimorman.gov.tr/public/istatistik . Accessed 24 May 2023
M.G.M. (2023). Meteoroloji Genel Müdürlüğü ( https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=K.MARAS ).
Martinez-Duro, E., Luzuriaga, A. L., Ferrandis, P., Escudero, A., & Herranz, J. M. (2012). Does aboveground vegetation composition resemble soil seed bank during succession in specialized vegetation on gypsum soil? Ecological Research, 27, 43–51. https://doi.org/10.1007/s11284-011-0870-z
doi: 10.1007/s11284-011-0870-z
Migliore, J., Baumel, A., Juin, M., Fady, B., Roig, A., Duong, N., & Médail, F. (2013). Surviving in mountain climate refugia: New insights from the genetic diversity and structure of the relict shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert. PLoS One, 8(9), e73795. https://doi.org/10.1371/journal.pone.0073795
doi: 10.1371/journal.pone.0073795
Mishra, R. (1968). Ecology Work Book. Oxford and IBH Publishing Co..
Mori, S. A., Boom, B. M., de Carvalho, A. M., & dos Santos, T. S. (1983). Southern Bahian moist forests. The Botanical Review, 49, 155–232. https://doi.org/10.1007/BF02861011
doi: 10.1007/BF02861011
Mseddi, K., Alghamdi, A., Abdelgadir, M., Sharawy, S., Chaieb, M., & Miller, T. (2021). Phytodiversity distribution in relation to altitudinal gradient in Salma Mountains–Saudi Arabia. Global Ecology and Conservation, 27, e01525.
doi: 10.1016/j.gecco.2021.e01525
Muhammad, Z., Khan, N., Ali, S., Ullah, A., & Khan, S. M. (2016). Density and taxonomic diversity of understory vegetation in relation to site conditions in natural stands of Acacia modesta in Malakand Division, Khyber Pakhtunkhwa, Pakistan. Science, 35(1), 26–34. https://doi.org/10.3923/std.2016.26.34
doi: 10.3923/std.2016.26.34
Musarella, C. M., Brullo, S., & Del Galdo, G. G. (2020). Contribution to the orophilous cushion-like vegetation of central-southern and insular Greece. Plants, 9(12), 1678. https://doi.org/10.3390/plants9121678
doi: 10.3390/plants9121678
Musciano, M. D., Zannini, P., Ferrara, C., Spina, L., Nascimbene, J., Vetaas, O. R., et al. (2021). Investigating elevational gradients of species richness in a Mediterranean plant hotspot using a published flora. Frontiers of Biogeography, 13(3), e50007. https://doi.org/10.21425/F5FBG50007
doi: 10.21425/F5FBG50007
Naiman, R. J., & Decamps, H. (1997). The ecology of interfaces: Riparian zones. Annual Review of Ecology, Evolution, and Systematics, 28(1), 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
doi: 10.1146/annurev.ecolsys.28.1.621
Nimis, P. L. (1980). The thorny-cushions vegetation in Mediterranean Italy: Phytogeographical problems. In Anales del Jardín Botánico de Madrid (37, 2, 339-351). .
Nogueira, H. C., & de la Guerra, M. M. (2002). Territorial integration of natural protected areas and ecological connectivity within Mediterranean landscapes (p. 124). Dirección General de la RENP y Servicios Ambientales.
Palabaş-Uzun, S., & Koca, C. (2020). Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş. Plant Diversity, 42(6), 443–454. https://doi.org/10.1016/j.pld.2020.12.003
doi: 10.1016/j.pld.2020.12.003
Palabaş-Uzun, S., & Uzun, A. (2017). Alpine and subalpine plant biodiversity of Turkey. In H. Arapgirlioğlu, R. L. Elliott, E. Turgeon, & H. A. Atik (Eds.), Researches on Science and Art in 21st Century Turkey (pp. 2454–2466). Gece Publishing.
Rahman, A. U., Khan, S. M., Khan, S., Hussain, A., Rahman, I. U., Iqbal, Z., & Ijaz, F. (2016). Ecological assessment of plant communities and associated edaphic and topographic variables in the Peochar Valley of the Hindu Kush mountains. Mountain Research and Development, 36(3), 332–341. https://doi.org/10.1659/MRD-JOURNAL-D-14-00100.1
doi: 10.1659/MRD-JOURNAL-D-14-00100.1
Sang, W. (2009). Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303–314. https://doi.org/10.1007/s11284-008-0507-z
doi: 10.1007/s11284-008-0507-z
Sarıgül, O., & Turoğlu, H. (2020). Kahramanmaraş şehri sel ve taşkınlarının coğrafi analizi ve öngörüler. Coğrafya Dergisi, 40, 275–293.
Solon, J., Degórski, M., & Roo-Zielińska, E. (2007). Vegetation response to a topographical-soil gradient. Catena, 71(2), 309–320. https://doi.org/10.1016/j.catena.2007.01.006
doi: 10.1016/j.catena.2007.01.006
Stromberg, J. C., Setaro, D. L., Gallo, E. L., Lohse, K. A., & Meixner, T. (2017). Riparian vegetation of ephemeral streams. Journal of Arid Environments, 138, 27–37. https://doi.org/10.1016/j.jaridenv.2016.12.004
doi: 10.1016/j.jaridenv.2016.12.004
Stubbington, R., Chadd, R., Cid, N., Csabai, Z., Miliša, M., Morais, M., et al. (2018). Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Science of the Total Environment, 618, 1096–1113. https://doi.org/10.1016/j.scitotenv.2017.09.137
doi: 10.1016/j.scitotenv.2017.09.137
Su, Y., Jia, X., Zhang, L., & Chen, H. (2022). Size-dependent associations of woody plant structural diversity with soil C: N: P stoichiometry in a subtropical forest. Frontiers in Environmental Science, 10, 990387. https://doi.org/10.3389/fenvs.2022.990387
doi: 10.3389/fenvs.2022.990387
Subedi, C. K., Rokaya, M. B., Münzbergová, Z., Timsina, B., Gurung, J., Chettri, N., et al. (2020). Vascular plant diversity along an elevational gradient in the Central Himalayas, western Nepal. Folia Geobotanica, 55, 127–140. https://doi.org/10.1007/s12224-020-09370-8
doi: 10.1007/s12224-020-09370-8
Sun, L., Luo, J., Qian, L., Deng, T., & Sun, H. (2020). The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Global Ecology and Conservation, 23, e01053. https://doi.org/10.1016/j.gecco.2020.e01053
doi: 10.1016/j.gecco.2020.e01053
Sunkar, M., & Denizdurduran, M. (2015). Kahramanmaraş’ta yaşanan sel ve taşkın olaylarının sebep ve sonuçları causes and effects of flood and torrent events that occurred in Kahramanmaraş. In Proceedings of the UJES 2015, IV. Ulusal Jeomorfoloji Sempozyumu, Samsun, Turkey.
Theurillat, J.-P., & Guisan, A. (2001). Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change, 50, 77–109. https://doi.org/10.1023/A:1010632015572
doi: 10.1023/A:1010632015572
TS 8333 (1990). Toprağın su ile doygunluk yüzdesinin tayininde kullanılan metod. ICS Code: 13.080.40. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073100079118080098048056057057102052 . Accessed 23 May 2023
Türkmen, N. (2018). The plant diversity and conservation status of the Taurus and Amanos mountains in the Eastern Mediterranean Region of Turkey. Biodiversity Journal, 9(4), 375–384. https://doi.org/10.31396/Biodiv.Jour.2018.9.4.385.394
doi: 10.31396/Biodiv.Jour.2018.9.4.385.394
Uludag, A., Aksoy, N., Yazlık, A., Arslan, Z. F., Yazmış, E., Uremis, I., et al. (2017). Alien flora of Turkey: Checklist, taxonomic composition and ecological attributes. NeoBiota, 35, 61–85. https://doi.org/10.3897/neobiota.35.12460
doi: 10.3897/neobiota.35.12460
Uzun, A., Aytaç, Z., & Tülücü, F. (2021). Astragalus nurhakdagensis (sect. Hololeuce Bunge / Fabaceae), a new species from Turkey. Turkish Journal of Botany, 45, 573–586.
doi: 10.3906/bot-2102-14
Uzun, A., Uzun, S. P., & Durmaz, A. (2019). Spatial analyses of Astragalus species distribution and richness in Kahramanmaraş (Turkey) by geographical information systems (GIS). Turkish Journal of Forest Science, 3(1), 37–59.
doi: 10.32328/turkjforsci.553375
Uzunsoy, O., & Gorcelioğlu, E. (1985). Havza Islahında Temel İlke ve Uygulamalar. 3310. cilt/İstanbul Üniversitesi yayınları, 371. cilt/İstanbul Üniversitesi: Orman Fakültesi yayınları, İstanbul.
Vetaas, O. R., & Grytnes, J. (2002). Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291e301. https://doi.org/10.1046/j.1466-822X.2002.00297.x
doi: 10.1046/j.1466-822X.2002.00297.x
Vidal-Abarca, M. R., Gómez, R., Sánchez-Montoya, M. M., Arce, M. I., Nicolás, N., & Suárez, M. L. (2020). Defining dry rivers as the most extreme type of non-perennial fluvial ecosystems. Sustainability, 12(17), 7202. https://doi.org/10.3390/su12177202
doi: 10.3390/su12177202
Wang, Z., Tang, Z., & Fang, J. (2007). Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13(6), 845–854 https://www.jstor.org/stable/4539987
doi: 10.1111/j.1472-4642.2007.00335.x
Wani, Z. A., Khan, S., Bhat, J. A., Malik, A. H., Alyas, T., Pant, S., Siddiqui, S., Moustafa, M., & Ahmad, A. E. (2022). Pattern of β-diversity and plant species richness along vertical gradient in Northwest Himalaya, India. Biology., 11(7), 1064. https://doi.org/10.3390/biology11071064
doi: 10.3390/biology11071064
Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677–678. https://doi.org/10.2136/sssaj1965.03615995002900060025x
doi: 10.2136/sssaj1965.03615995002900060025x
Winkler, M., Lamprecht, A., Steinbauer, K., Hülber, K., Theurillat, J. P., Breiner, F., et al. (2016). The rich sides of mountain summits–A pan-European view on aspect preferences of alpine plants. Journal of Biogeography, 43(11), 2261–2273. https://doi.org/10.1111/jbi.12835
doi: 10.1111/jbi.12835
Xu, X. L., Ma, K. M., Fu, B. J., Song, C. J., & Liu, W. (2008). Relationships between vegetation and soil and topography in a dry warm river valley, SW China. Catena, 75(2), 138–145. https://doi.org/10.1016/j.catena.2008.04.016
doi: 10.1016/j.catena.2008.04.016
Yang, Q., Zhang, H., Wang, L., Ling, F., Wang, Z., Li, T., & Huang, J. (2021). Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests. Plant Diversity, 43(4), 264–274. https://doi.org/10.1016/j.pld.2021.03.003
doi: 10.1016/j.pld.2021.03.003
Zegeye, H. (2006). Diversity, regeneration status and socioeconomic importance of vegetation in the islands of Lake Ziway, south-central Ethiopia. Flora, 201, 483–498. https://doi.org/10.1016/j.flora.2005.10.006
doi: 10.1016/j.flora.2005.10.006
Zhang, C., Zhao, X., & Von Gadow, K. (2010). Partitioning temperate plant community structure at different scales. Acta Oecologica, 36(3), 306–313. https://doi.org/10.1016/j.actao.2010.02.003
doi: 10.1016/j.actao.2010.02.003
Zhang, Q. P., Fang, R. Y., Deng, C. Y., Zhao, H. J., Shen, M. H., & Wang, Q. (2022). Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan plateau. Ecological Indicators, 143, 109400. https://doi.org/10.1016/j.ecolind.2022.109400
doi: 10.1016/j.ecolind.2022.109400