The metabolic potential of inflammatory and insulinaemic dietary patterns and risk of type 2 diabetes.

Dietary pattern Hyperinsulinaemia Inflammation Metabolomics Type 2 diabetes

Journal

Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777

Informations de publication

Date de publication:
Jan 2024
Historique:
received: 08 04 2023
accepted: 31 08 2023
pubmed: 11 10 2023
medline: 11 10 2023
entrez: 10 10 2023
Statut: ppublish

Résumé

Diets with higher inflammatory and insulinaemic potential have been associated with an increased risk of type 2 diabetes. However, it remains unknown whether plasma metabolomic profiles related to proinflammatory/hyperinsulinaemic diets and to inflammatory/insulin biomarkers are associated with type 2 diabetes risk. We analysed 6840 participants from the Nurses' Health Study and Health Professionals Follow-up Study to identify the plasma metabolome related to empirical dietary inflammatory pattern (EDIP), empirical dietary index for hyperinsulinemia (EDIH), four circulating inflammatory biomarkers and C-peptide. Dietary intakes were assessed using validated food frequency questionnaires. Plasma metabolomic profiling was conducted by LC-MS/MS. Metabolomic signatures were derived using elastic net regression. Multivariable Cox regression was used to examine associations of the metabolomic profiles with type 2 diabetes risk. We identified 27 metabolites commonly associated with both EDIP and inflammatory biomarker z score and 21 commonly associated with both EDIH and C-peptide. Higher metabolomic dietary inflammatory potential (MDIP), reflecting higher metabolic potential of both an inflammatory dietary pattern and circulating inflammatory biomarkers, was associated with higher type 2 diabetes risk. The HR comparing highest vs lowest quartiles of MDIP was 3.26 (95% CI 2.39, 4.44). We observed a strong positive association with type 2 diabetes risk for the metabolomic signature associated with EDIP-only (HR 3.75; 95% CI 2.71, 5.17) or inflammatory biomarkers-only (HR 4.07; 95% CI 2.91, 5.69). In addition, higher metabolomic dietary index for hyperinsulinaemia (MDIH), reflecting higher metabolic potential of both an insulinaemic dietary pattern and circulating C-peptide, was associated with greater type 2 diabetes risk (HR 3.00; 95% CI 2.22, 4.06); further associations with type 2 diabetes were HR 2.79 (95% CI 2.07, 3.76) for EDIH-only signature and HR 3.89 (95% CI 2.82, 5.35) for C-peptide-only signature. The diet scores were significantly associated with risk, although adjustment for the corresponding metabolomic signature scores attenuated the associations with type 2 diabetes, these remained significant. The metabolomic signatures reflecting proinflammatory or hyperinsulinaemic diets and related biomarkers were positively associated with type 2 diabetes risk, supporting that these dietary patterns may influence type 2 diabetes risk via the regulation of metabolism.

Identifiants

pubmed: 37816982
doi: 10.1007/s00125-023-06021-3
pii: 10.1007/s00125-023-06021-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

88-101

Subventions

Organisme : NIH HHS
ID : U01 CA176726
Pays : United States
Organisme : NIH HHS
ID : UM1 CA186107
Pays : United States
Organisme : NIH HHS
ID : U01 CA167552
Pays : United States
Organisme : NIH HHS
ID : P01 CA87969
Pays : United States
Organisme : NIH HHS
ID : R00 CA207736
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA207736
Pays : United States
Organisme : NIH HHS
ID : R01 CA50385
Pays : United States
Organisme : NIH HHS
ID : P01 CA87969
Pays : United States
Organisme : NIH HHS
ID : R00 CA207736
Pays : United States
Organisme : NIH HHS
ID : R01 CA50385
Pays : United States
Organisme : NIH HHS
ID : U01 CA167552
Pays : United States
Organisme : NIH HHS
ID : U01 CA176726
Pays : United States
Organisme : NIH HHS
ID : UM1 CA186107
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Harmon BE, Boushey CJ, Shvetsov YB et al (2015) Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: the Dietary Patterns Methods Project. Am J Clin Nutr 101(3):587–597. https://doi.org/10.3945/ajcn.114.090688
doi: 10.3945/ajcn.114.090688 pubmed: 25733644 pmcid: 4340063
Liese AD, Krebs-Smith SM, Subar AF et al (2015) The Dietary Patterns Methods Project: synthesis of findings across cohorts and relevance to dietary guidance. J Nutr 145(3):393–402. https://doi.org/10.3945/jn.114.205336
doi: 10.3945/jn.114.205336 pubmed: 25733454 pmcid: 4336525
Cespedes EM, Hu FB, Tinker L et al (2016) (2016) Multiple healthful dietary patterns and type 2 diabetes in the Women’s Health Initiative. Am J Epidemiol 183:622–633. https://doi.org/10.1093/aje/kwv241
doi: 10.1093/aje/kwv241 pubmed: 26940115 pmcid: 4801136
World Cancer Research Fund/American Institute for Cancer Research (2018) Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018. Available from www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf
Chiuve SE, Fung TT, Rimm EB et al (2012) Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 142(6):1009–1018. https://doi.org/10.3945/jn.111.157222
doi: 10.3945/jn.111.157222 pubmed: 22513989 pmcid: 3738221
Schulze MB, Hoffmann K, Kroke A, Boeing H (2003) An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br J Nutr 89(3):409–418. https://doi.org/10.1079/BJN2002778
doi: 10.1079/BJN2002778 pubmed: 12628035
Varraso R, Garcia-Aymerich J, Monier F et al (2012) Assessment of dietary patterns in nutritional epidemiology: principal component analysis compared with confirmatory factor analysis. Am J Clin Nutr 96(5):1079–1092. https://doi.org/10.3945/ajcn.112.038109
doi: 10.3945/ajcn.112.038109 pubmed: 23034967
Tabung FK, Giovannucci EL, Giulianini F et al (2018) An empirical dietary inflammatory pattern score is associated with circulating inflammatory biomarkers in a multi-ethnic population of postmenopausal women in the United States. J Nutr 148(5):771–780. https://doi.org/10.1093/jn/nxy031
doi: 10.1093/jn/nxy031 pubmed: 29897561 pmcid: 5972616
Tabung FK, Smith-Warner SA, Chavarro JE et al (2017) An empirical dietary inflammatory pattern score enhances prediction of circulating inflammatory biomarkers in adults. J Nutr 147(8):1567–1577. https://doi.org/10.3945/jn.117.248377
doi: 10.3945/jn.117.248377 pubmed: 28659407 pmcid: 5525108
Tabung FK, Smith-Warner SA, Chavarro JE et al (2016) Development and validation of an empirical Dietary Inflammatory Index. J Nutr 146(8):1560–1570. https://doi.org/10.3945/jn.115.228718
doi: 10.3945/jn.115.228718 pubmed: 27358416 pmcid: 4958288
Tabung FK, Wang W, Fung TT et al (2016) Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle. Br J Nutr 116(10):1787–1798. https://doi.org/10.1017/S0007114516003755
doi: 10.1017/S0007114516003755 pubmed: 27821188 pmcid: 5623113
Liu L, Nishihara R, Qian ZR et al (2017) Association between inflammatory diet pattern and risk of colorectal carcinoma subtypes classified by immune responses to tumor. Gastroenterology 153(6):1517–1530. https://doi.org/10.1053/j.gastro.2017.08.045 . (e1514)
doi: 10.1053/j.gastro.2017.08.045 pubmed: 28865736
Tabung FK, Liu L, Wang W et al (2018) Association of dietary inflammatory potential with colorectal cancer risk in men and women. JAMA Oncol 4(3):366–373. https://doi.org/10.1001/jamaoncol.2017.4844
doi: 10.1001/jamaoncol.2017.4844 pubmed: 29346484 pmcid: 5844836
Tabung FK, Wang W, Fung TT et al (2018) Association of dietary insulinemic potential and colorectal cancer risk in men and women. Am J Clin Nutr 108(2):363–370. https://doi.org/10.1093/ajcn/nqy093
doi: 10.1093/ajcn/nqy093 pubmed: 29901698 pmcid: 6454497
Li J, Lee DH, Hu J et al (2020) Dietary inflammatory potential and risk of cardiovascular disease among men and women in the U.S. J Am Coll Cardiol 76(19):2181–2193. https://doi.org/10.1016/j.jacc.2020.09.535
doi: 10.1016/j.jacc.2020.09.535 pubmed: 33153576 pmcid: 7745775
Lee DH, Li J, Li Y et al (2020) Dietary inflammatory and insulinemic potential and risk of type 2 diabetes: results from three prospective US cohort studies. Diabetes Care 43(11):2675–2683. https://doi.org/10.2337/dc20-0815
doi: 10.2337/dc20-0815 pubmed: 32873589 pmcid: 7576428
Guasch-Ferre M, Bhupathiraju SN, Hu FB (2018) Use of metabolomics in improving assessment of dietary intake. Clin Chem 64(1):82–98. https://doi.org/10.1373/clinchem.2017.272344
doi: 10.1373/clinchem.2017.272344 pubmed: 29038146
Brennan L, Hu FB (2019) Metabolomics-based dietary biomarkers in nutritional epidemiology—current status and future opportunities. Mol Nutr Food Res 63(1):e1701064. https://doi.org/10.1002/mnfr.201701064
doi: 10.1002/mnfr.201701064 pubmed: 29688616
Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451. https://doi.org/10.1038/nrm.2016.25
doi: 10.1038/nrm.2016.25 pubmed: 26979502 pmcid: 5729912
Colditz GA, Manson JE, Hankinson SE (1997) The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Women’s Health 6(1):49–62. https://doi.org/10.1089/jwh.1997.6.49
doi: 10.1089/jwh.1997.6.49
Rimm EB, Giovannucci EL, Willett WC et al (1991) Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 338(8765):464–468. https://doi.org/10.1016/0140-6736(91)90542-W
doi: 10.1016/0140-6736(91)90542-W pubmed: 1678444
Hankinson SE, Willett WC, Manson JE et al (1995) Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst 87(17):1297–1302. https://doi.org/10.1093/jnci/87.17.1297
doi: 10.1093/jnci/87.17.1297 pubmed: 7658481
Wittenbecher C, Guasch-Ferre M, Haslam DE et al (2022) Changes in metabolomics profiles over ten years and subsequent risk of developing type 2 diabetes: results from the Nurses’ Health Study. EBioMedicine 75:103799. https://doi.org/10.1016/j.ebiom.2021.103799
doi: 10.1016/j.ebiom.2021.103799 pubmed: 34979341
Feskanich D, Rimm EB, Giovannucci EL et al (1993) Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Dietetic Assoc 93(7):790–796. https://doi.org/10.1016/0002-8223(93)91754-E
doi: 10.1016/0002-8223(93)91754-E
Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135(10):1114–1126. https://doi.org/10.1093/oxfordjournals.aje.a116211
doi: 10.1093/oxfordjournals.aje.a116211 pubmed: 1632423
Willett WC, Sampson L, Stampfer MJ et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122(1):51–65. https://doi.org/10.1093/oxfordjournals.aje.a114086
doi: 10.1093/oxfordjournals.aje.a114086 pubmed: 4014201
Yuan C, Spiegelman D, Rimm EB et al (2018) Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. Am J Epidemiol 187(5):1051–1063. https://doi.org/10.1093/aje/kwx328
doi: 10.1093/aje/kwx328 pubmed: 29036411
Yuan C, Spiegelman D, Rimm EB et al (2017) Validity of a dietary questionnaire assessed by comparison with multiple weighed dietary records or 24-hour recalls. Am J Epidemiol 185(7):570–584. https://doi.org/10.1093/aje/kww104
doi: 10.1093/aje/kww104 pubmed: 28338828 pmcid: 5859994
Hu FB, Stampfer MJ, Rimm E et al (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149(6):531–540. https://doi.org/10.1093/oxfordjournals.aje.a009849
doi: 10.1093/oxfordjournals.aje.a009849 pubmed: 10084242
Pai JK, Pischon T, Ma J et al (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351(25):2599–2610. https://doi.org/10.1056/NEJMoa040967
doi: 10.1056/NEJMoa040967 pubmed: 15602020
Cheng S, Larson MG, McCabe EL et al (2015) Distinct metabolomic signatures are associated with longevity in humans. Nat Commun 6(1):1–10. https://doi.org/10.1038/ncomms7791
doi: 10.1038/ncomms7791
Mascanfroni ID, Takenaka MC, Yeste A et al (2015) Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat Med 21(6):638–646. https://doi.org/10.1038/nm.3868
doi: 10.1038/nm.3868 pubmed: 26005855 pmcid: 4476246
O’Sullivan JF, Morningstar JE, Yang Q et al (2017) Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J Clin Investig 127(12):4394–4402. https://doi.org/10.1172/JCI95995
doi: 10.1172/JCI95995 pubmed: 29083323 pmcid: 5707166
Paynter NP, Balasubramanian R, Giulianini F et al (2018) Metabolic predictors of incident coronary heart disease in women. Circulation 137(8):841–853. https://doi.org/10.1161/CIRCULATIONAHA.117.029468
doi: 10.1161/CIRCULATIONAHA.117.029468 pubmed: 29459470 pmcid: 5854187
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
doi: 10.18637/jss.v033.i01 pubmed: 20808728 pmcid: 2929880
Li J, Guasch-Ferré M, Chung W et al (2020) The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur Heart J 41(28):2645–2656. https://doi.org/10.1093/eurheartj/ehaa209
doi: 10.1093/eurheartj/ehaa209 pubmed: 32406924 pmcid: 7377580
Wang F, Baden MY, Guasch-Ferré M et al (2022) Plasma metabolite profiles related to plant-based diets and the risk of type 2 diabetes. Diabetologia 65(7):1119–1132. https://doi.org/10.1007/s00125-022-05692-8
doi: 10.1007/s00125-022-05692-8 pubmed: 35391539 pmcid: 9810389
Lee DH, Jin Q, Shi N et al (2023) Dietary inflammatory and insulinemic potentials, plasma metabolome and risk of colorectal cancer. Metabolites 13(6):744. https://doi.org/10.3390/metabo13060744
doi: 10.3390/metabo13060744 pubmed: 37367904 pmcid: 10304271
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
doi: 10.1111/j.2517-6161.1995.tb02031.x
Tabung FK, Liang L, Huang T et al (2019) Identifying metabolomic profiles of inflammatory diets in postmenopausal women. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.06.010
doi: 10.1016/j.clnu.2019.06.010 pubmed: 31255351 pmcid: 6918009
Bene J, Hadzsiev K, Melegh B (2018) Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 8(1):8. https://doi.org/10.1038/s41387-018-0017-1
doi: 10.1038/s41387-018-0017-1 pubmed: 29549241 pmcid: 5856836
Bruce CR, Hoy AJ, Turner N et al (2009) Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58(3):550–558. https://doi.org/10.2337/db08-1078
doi: 10.2337/db08-1078 pubmed: 19073774 pmcid: 2646053
Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T (1997) Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem 272(6):3324–3329. https://doi.org/10.1074/jbc.272.6.3324
doi: 10.1074/jbc.272.6.3324 pubmed: 9013572
Hang D, Zeleznik OA, He X et al (2020) Metabolomic signatures of long-term coffee consumption and risk of type 2 diabetes in women. Diabetes Care 43(10):2588–2596. https://doi.org/10.2337/dc20-0800
doi: 10.2337/dc20-0800 pubmed: 32788283 pmcid: 7510042
Wang DD, Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 6(5):416–426. https://doi.org/10.1016/S2213-8587(18)30037-8
doi: 10.1016/S2213-8587(18)30037-8 pubmed: 29433995
Townsend MK, Clish CB, Kraft P et al (2013) Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin Chem 59(11):1657–1667. https://doi.org/10.1373/clinchem.2012.199133
doi: 10.1373/clinchem.2012.199133 pubmed: 23897902
Jin Q, Shi N, Aroke D et al (2021) Insulinemic and inflammatory dietary patterns show enhanced predictive potential for type 2 diabetes risk in postmenopausal women. Diabetes Care 44(3):707–714. https://doi.org/10.2337/dc20-2216
doi: 10.2337/dc20-2216 pubmed: 33419931 pmcid: 7896263
Shi N, Aroke D, Jin Q et al (2021) Proinflammatory and hyperinsulinemic dietary patterns are associated with specific profiles of biomarkers predictive of chronic inflammation, glucose-insulin dysregulation, and dyslipidemia in postmenopausal women. Front Nutr 8:690428. https://doi.org/10.3389/fnut.2021.690428
doi: 10.3389/fnut.2021.690428 pubmed: 34616762 pmcid: 8488136

Auteurs

Dong Hoon Lee (DH)

Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea.
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Qi Jin (Q)

Department of Exercise and Nutrition Sciences, Moyes College of Education, Weber State University, Ogden, UT, USA.
Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA.

Ni Shi (N)

Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.

Fenglei Wang (F)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Alaina M Bever (AM)

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.

Liming Liang (L)

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Frank B Hu (FB)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Mingyang Song (M)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Oana A Zeleznik (OA)

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Xuehong Zhang (X)

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Amit Joshi (A)

Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Kana Wu (K)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Justin Y Jeon (JY)

Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea.
Cancer Prevention Center, Yonsei Cancer Center, Seoul, Republic of Korea.

Jeffrey A Meyerhardt (JA)

Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.

Andrew T Chan (AT)

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

A Heather Eliassen (AH)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Clary Clish (C)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Steven K Clinton (SK)

Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA.
Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.

Edward L Giovannucci (EL)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Jun Li (J)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Fred K Tabung (FK)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. fred.tabung@osumc.edu.
Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA. fred.tabung@osumc.edu.
Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA. fred.tabung@osumc.edu.
Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA. fred.tabung@osumc.edu.
Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA. fred.tabung@osumc.edu.

Classifications MeSH