Symmetry dictionary on charge and spin nonlinear responses for all magnetic point groups with nontrivial topological nature.

magnetic point group matrix representation nonlinear response

Journal

National science review
ISSN: 2053-714X
Titre abrégé: Natl Sci Rev
Pays: China
ID NLM: 101633095

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 25 09 2022
revised: 29 11 2022
accepted: 15 02 2023
medline: 11 10 2023
pubmed: 11 10 2023
entrez: 11 10 2023
Statut: epublish

Résumé

Recently, charge or spin nonlinear transport with nontrivial topological properties in crystal materials has attracted much attention. In this paper, we perform a comprehensive symmetry analysis for all 122 magnetic point groups (MPGs) and provide a useful dictionary for charge and spin nonlinear transport from the Berry curvature dipole, Berry connection polarizability and Drude term with nontrivial topological nature. The results are obtained by conducting a full symmetry investigation of the matrix representations of six nonlinear response tensors. We further identify every MPG that can accommodate two or three of the nonlinear tensors. The present work gives a solid theoretical basis for an overall understanding of the second-order nonlinear responses in realistic materials.

Identifiants

pubmed: 37818112
doi: 10.1093/nsr/nwad104
pii: nwad104
pmc: PMC10561712
doi:

Types de publication

Journal Article

Langues

eng

Pagination

nwad104

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.

Références

Phys Rev Lett. 2018 Dec 28;121(26):266601
pubmed: 30636120
Nature. 2017 Jul 19;547(7663):298-305
pubmed: 28726818
Phys Rev Lett. 2021 Dec 31;127(27):277201
pubmed: 35061403
Nat Commun. 2022 Mar 29;13(1):1659
pubmed: 35351870
Phys Rev Lett. 2020 Feb 14;124(6):067203
pubmed: 32109084
J Phys Condens Matter. 2020 Mar 20;32(12):125901
pubmed: 31751952
Phys Rev Lett. 2005 Nov 25;95(22):226801
pubmed: 16384250
Nat Mater. 2019 Apr;18(4):324-328
pubmed: 30804510
Nature. 2019 Jan;565(7739):337-342
pubmed: 30559379
Nat Mater. 2023 May;22(5):576-582
pubmed: 36928382
Phys Rev Lett. 2021 Dec 31;127(27):277202
pubmed: 35061417
Nat Commun. 2021 Oct 13;12(1):5965
pubmed: 34645841
Phys Rev Lett. 2014 Apr 25;112(16):166601
pubmed: 24815661
Phys Rev Lett. 2019 Nov 8;123(19):196403
pubmed: 31765194
Phys Rev Lett. 2015 Nov 20;115(21):216806
pubmed: 26636867
Nature. 2019 Feb;566(7745):480-485
pubmed: 30814710
Nat Commun. 2021 Aug 19;12(1):5038
pubmed: 34413295
Nature. 2020 Oct;586(7831):702-707
pubmed: 33116291

Auteurs

Zhi-Fan Zhang (ZF)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Zhen-Gang Zhu (ZG)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China.

Gang Su (G)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China.
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.

Classifications MeSH