Spatial proteomics identifies a spectrum of immune dysregulation in acquired bone marrow failure syndromes.
aplastic anaemia
autoimmune
bone marrow
inflammation
microenvironment
poor graft function
spatial proteomics
stem cell transplant
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2023
2023
Historique:
received:
28
04
2023
accepted:
04
09
2023
medline:
12
10
2023
pubmed:
11
10
2023
entrez:
11
10
2023
Statut:
epublish
Résumé
Poor graft function (PGF), manifested by multilineage cytopenias and complete donor chimerism post-allogeneic stem cell transplantation (alloSCT), and acquired aplastic anaemia (AA) are immune-mediated acquired bone marrow (BM) failure syndromes with a similar clinical presentation. In this study, we used spatial proteomics to compare the immunobiology of the BM microenvironment and identify common mechanisms of immune dysregulation under these conditions. Archival BM trephines from patients exhibited downregulation of the immunoregulatory protein VISTA and the M2 macrophage marker and suppressor of T-cell activation ARG1 with increased expression of the immune checkpoint B7-H3 compared to normal controls. Increased CD163 and CD14 expression suggested monocyte/macrophage skewing, which, combined with dysregulation of STING and VISTA, is indicative of an environment of reduced immunoregulation resulting in the profound suppression of hematopoiesis in these two conditions. There were no changes in the immune microenvironment between paired diagnostic AA and secondary MDS/AML samples suggesting that leukaemic clones develop in the impaired immune microenvironment of AA without the need for further alterations. Of the eight proteins with dysregulated expression shared by diagnostic AA and PGF, the diagnostic AA samples had a greater fold change in expression than PGF, suggesting that these diseases represent a spectrum of immune dysregulation. Unexpectedly, analysis of samples from patients with good graft function post-alloSCT demonstrated significant changes in the immune microenvironment compared to normal controls, with downregulation of CD44, STING, VISTA, and ARG1, suggesting that recovery of multilineage haematopoiesis post-alloSCT does not reflect recovery of immune function and may prime patients for the development of PGF upon further inflammatory insult. The demonstrable similarities in the immunopathology of AA and PGF will allow the design of clinical interventions that include both patient cohorts to accelerate therapeutic discovery and translation.
Identifiants
pubmed: 37818364
doi: 10.3389/fimmu.2023.1213560
pmc: PMC10560754
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1213560Informations de copyright
Copyright © 2023 Koldej, Prabahran, Tan, Ludford-Menting, Morgan, Holzwart, Davis and Ritchie.
Déclaration de conflit d'intérêts
DR: Takeda: advisory board and research funds; Novartis: advisory boar; MDS: advisory board. CSL: advisory board; Sanofi-Adventis: advisory board; BMS: research funds. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author RK declared that she was an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
Références
Hematology Am Soc Hematol Educ Program. 2011;2011:90-5
pubmed: 22160018
Leuk Lymphoma. 2021 Jun;62(6):1482-1489
pubmed: 33522344
J Immunol. 1990 Jan 1;144(1):7-15
pubmed: 1967267
Haematologica. 2017 Oct;102(10):1683-1690
pubmed: 28751565
Haematologica. 2009 Mar;94(3):428-9
pubmed: 19181780
Cell Mol Immunol. 2021 Mar;18(3):632-643
pubmed: 33500563
Blood. 2019 May 9;133(19):2043-2055
pubmed: 30803992
Front Immunol. 2020 Apr 28;11:615
pubmed: 32411126
Blood. 2023 Jan 5;141(1):72-89
pubmed: 36130301
Ann Hematol. 2011 May;90(5):529-37
pubmed: 21207031
Blood. 2016 Jul 21;128(3):337-47
pubmed: 27121470
Blood. 1998 Aug 1;92(3):894-900
pubmed: 9680357
Eur J Haematol. 2018 Dec;101(6):711-720
pubmed: 30055055
Nat Immunol. 2001 Mar;2(3):269-74
pubmed: 11224528
Lancet. 2004 Jul 24-30;364(9431):355-64
pubmed: 15276395
Blood. 2011 Mar 17;117(11):3230-9
pubmed: 21239702
J Exp Med. 1990 Feb 1;171(2):477-88
pubmed: 2406365
Eur J Immunol. 2012 Sep;42(9):2343-53
pubmed: 22733595
Leukemia. 2023 Jan;37(1):202-211
pubmed: 36253429
Blood. 2021 Dec 30;138(26):2799-2809
pubmed: 34724566
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Blood Adv. 2019 Nov 26;3(22):3562-3574
pubmed: 31738831
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12969-73
pubmed: 15317945
Ann Hematol. 2019 Mar;98(3):541-559
pubmed: 30666431
Atherosclerosis. 2017 Jan;256:35-46
pubmed: 27998825
Intern Med J. 2019 Feb;49(2):152-159
pubmed: 30324755
Eur J Immunol. 2005 Feb;35(2):428-38
pubmed: 15682454
J Immunol. 2004 Feb 15;172(4):2352-9
pubmed: 14764704
Cell. 2011 Nov 23;147(5):1146-58
pubmed: 22118468
Blood Adv. 2022 Mar 22;6(6):1947-1959
pubmed: 34492685
Genome Biol. 2010;11(3):R25
pubmed: 20196867
Blood. 2011 Apr 28;117(17):4434-41
pubmed: 21233311
J Immunol. 2016 Feb 15;196(4):1568-78
pubmed: 26764034
Leukemia. 2021 Nov;35(11):3139-3151
pubmed: 33744909
Blood. 2006 Sep 1;108(5):1627-34
pubmed: 16709924
Front Immunol. 2019 Nov 19;10:2641
pubmed: 31803182
J Immunol. 1989 Aug 1;143(3):798-801
pubmed: 2568380
Immunity. 2020 Jul 14;53(1):115-126.e5
pubmed: 32640258
N Engl J Med. 2017 Apr 20;376(16):1540-1550
pubmed: 28423296
Bone Marrow Transplant. 2022 Oct;57(10):1489-1499
pubmed: 35871087
Haematologica. 2018 Sep;103(9):1451-1461
pubmed: 29773597
J Exp Med. 2003 Nov 3;198(9):1369-80
pubmed: 14581610
Blood. 2002 Aug 1;100(3):786-90
pubmed: 12130487
Genome Biol. 2014 Feb 03;15(2):R29
pubmed: 24485249
Immunology. 1989 Sep;68(1):59-65
pubmed: 2680909
Sci Transl Med. 2017 Apr 19;9(386):
pubmed: 28424327
Immunooncol Technol. 2020 Mar 03;5:1-9
pubmed: 35756143
Sci Rep. 2021 Sep 24;11(1):19056
pubmed: 34561502
N Engl J Med. 2012 Jul 5;367(1):11-9
pubmed: 22762314
J Immunol. 2004 Nov 1;173(9):5445-50
pubmed: 15494491
Bioinformatics. 2009 Mar 15;25(6):765-71
pubmed: 19176553
Science. 2020 Jan 17;367(6475):
pubmed: 31949051
Sci Transl Med. 2020 Jul 15;12(552):
pubmed: 32669421
Cancer Res. 2014 Apr 1;74(7):1933-44
pubmed: 24691994
Transplant Cell Ther. 2021 May;27(5):430.e1-430.e7
pubmed: 33965187
Br J Haematol. 2008 Sep;142(5):827-30
pubmed: 18510677
Biol Blood Marrow Transplant. 2013 Jun;19(6):876-87
pubmed: 23523972
Blood. 2012 Mar 1;119(9):2033-43
pubmed: 22138514
Haematologica. 2020 Sep 10;106(2):647-650
pubmed: 33054127
Am J Physiol Lung Cell Mol Physiol. 2004 Jul;287(1):L217-25
pubmed: 15047568
Blood. 2018 Dec 27;132(26):2730-2743
pubmed: 30361263
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12640-5
pubmed: 15314238
J Immunol. 2004 Aug 15;173(4):2500-6
pubmed: 15294965
Nat Commun. 2022 Dec 10;13(1):7657
pubmed: 36496394
Nat Immunol. 2003 Sep;4(9):899-906
pubmed: 12925852