Computational fluid dynamics comparison of the upper airway velocity, pressure, and resistance in cats using an endotracheal tube or a supraglottic airway device.

ETT airway management feline flow general anesthesia in silico v-gel®

Journal

Frontiers in veterinary science
ISSN: 2297-1769
Titre abrégé: Front Vet Sci
Pays: Switzerland
ID NLM: 101666658

Informations de publication

Date de publication:
2023
Historique:
received: 09 03 2023
accepted: 04 09 2023
medline: 11 10 2023
pubmed: 11 10 2023
entrez: 11 10 2023
Statut: epublish

Résumé

In veterinary medicine, airway management of cats under general anesthesia is performed with an endotracheal tube (ETT) or supraglottic airway device (SGAD). This study aims to describe the use of computational fluid dynamics (CFD) to assess the velocities, pressures, and resistances of cats with ETT or SGAD. A geometrical reconstruction model of the device, trachea, and lobar bronchi was carried out from computed tomography (CT) scans that include the head, neck, and thorax. Twenty CT scans of cats under general anesthesia using ETT ( Recirculatory flow and high velocities were found at the ETT's bevel and at the glottis level in the SGAD group. The pressure gradient (Δp) was more enhanced in the ETT cases compared with the SGAD cases, where the pressure change was drastic. In region A, the Δp was higher in the ETT group, while in regions B and C, it was higher in the SGAD group. The general resistance was not statistically significant between groups ( Overall, the provided CT-based CFD analysis demonstrated regional changes in airway pressure and resistance between ETT and SGAD during anesthetic flow conditions. Correct selection of the airway device size is recommended to avoid upper airway obstruction or changes in flow parameters.

Identifiants

pubmed: 37818391
doi: 10.3389/fvets.2023.1183223
pmc: PMC10561303
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1183223

Informations de copyright

Copyright © 2023 Zamora-Perarnau, Malvè and Fernández-Parra.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

J Am Assoc Lab Anim Sci. 2006 Nov;45(6):67-72
pubmed: 17089996
Anat Rec (Hoboken). 2016 Jul;299(7):853-68
pubmed: 27145450
Animals (Basel). 2019 Dec 09;9(12):
pubmed: 31835419
J Exp Biol. 2014 May 15;217(Pt 10):1799-803
pubmed: 24577441
Anesth Analg. 2004 Jul;99(1):124-127
pubmed: 15281517
J Biomech Eng. 2009 Sep;131(9):091002
pubmed: 19725691
Vet Clin North Am Small Anim Pract. 2007 Sep;37(5):829-43, v
pubmed: 17693201
Anat Rec (Hoboken). 2007 Nov;290(11):1325-40
pubmed: 17929289
Rhinology. 2010 Jun;48(2):139-45
pubmed: 20502749
Vet Radiol Ultrasound. 2017 Sep;58(5):542-551
pubmed: 28718208
J Biomech Eng. 2018 Jun 1;140(6):
pubmed: 29131890
Vet Anaesth Analg. 2010 Nov;37(6):579-80
pubmed: 21040382
Toxicol Sci. 2012 Aug;128(2):500-16
pubmed: 22584687
J Exp Biol. 2016 Jun 15;219(Pt 12):1866-74
pubmed: 27045093
J Appl Physiol (1985). 2007 Mar;102(3):1178-84
pubmed: 17138831
Chem Senses. 2006 Feb;31(2):107-18
pubmed: 16354744
Anaesthesia. 2015 May;70(5):577-84
pubmed: 25581493
Crit Care Med. 2000 May;28(5):1595-8
pubmed: 10834718
Vet Anaesth Analg. 2004 Jul;31(3):213-21
pubmed: 15268693
Anat Rec (Hoboken). 2022 Aug;305(8):1962-1973
pubmed: 34636487
Clin Biomech (Bristol, Avon). 2019 Jun;66:88-96
pubmed: 29079097
J Feline Med Surg. 2022 Aug;24(8):800-805
pubmed: 34663126
Anat Rec (Hoboken). 2014 Nov;297(11):2138-47
pubmed: 25312370
Front Vet Sci. 2017 Apr 10;4:49
pubmed: 28443290
J Biomech. 2008;41(9):2047-54
pubmed: 18501360
Vet Anaesth Analg. 2016 Jan;43(1):55-62
pubmed: 25819338
Med Biol Eng Comput. 2016 Jul;54(7):1085-96
pubmed: 26563199
Adv Clin Exp Med. 2017 Sep;26(6):947-952
pubmed: 29068595
Am J Physiol. 1973 Apr;224(4):904-17
pubmed: 4698808
Vet Sci. 2022 Jun 07;9(6):
pubmed: 35737329
Vet J. 2019 Nov;253:105392
pubmed: 31685131
Proc Biol Sci. 2015 Feb 7;282(1800):20142161
pubmed: 25520358
Respir Physiol Neurobiol. 2007 May 14;156(2):179-86
pubmed: 17113363
Respir Physiol Neurobiol. 2019 Feb;260:82-94
pubmed: 30445230
Vet Anaesth Analg. 2007 May;34(3):213-6
pubmed: 17444935
Comput Methods Programs Biomed. 2020 Nov;196:105627
pubmed: 32629222
Anaesthesia. 2015 Nov;70(11):1326-9
pubmed: 26449299
Animals (Basel). 2021 Aug 18;11(8):
pubmed: 34438888
J Am Vet Med Assoc. 2000 May 15;216(10):1592-5
pubmed: 10825947
Chem Senses. 2007 Mar;32(3):215-23
pubmed: 17220519

Auteurs

Carla Zamora-Perarnau (C)

Doctoral School, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.
Department of Small Animal Medicine and Surgery, Faculty of Veterinary Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.
Veterinary Referral Hospital UCV, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.

Mauro Malvè (M)

Department of Engineering, Public University of Navarre (UPNA), Pamplona, Spain.
Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.

Rocío Fernández-Parra (R)

Department of Small Animal Medicine and Surgery, Faculty of Veterinary Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.
Veterinary Referral Hospital UCV, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.

Classifications MeSH