Bradykinin-bradykinin receptor (B1R) signalling is involved in the blood-brain barrier disruption in moyamoya disease.
Moyamoya disease
blood-brain barrier
bradykinin
bradykinin receptor
des-Arg9-BK
Journal
Journal of cellular and molecular medicine
ISSN: 1582-4934
Titre abrégé: J Cell Mol Med
Pays: England
ID NLM: 101083777
Informations de publication
Date de publication:
11 Oct 2023
11 Oct 2023
Historique:
revised:
05
09
2023
received:
22
06
2023
accepted:
26
09
2023
medline:
11
10
2023
pubmed:
11
10
2023
entrez:
11
10
2023
Statut:
aheadofprint
Résumé
Moyamoya disease (MMD) is a rare disorder of the cerebrovascular system. It is a steno-occlusive disease that involves angiogenesis and blood-brain barrier (BBB) disruption. Bradykinin (BK), its metabolite des-Arg9-BK, and receptor (B1R) affect angiogenesis and BBB integrity. In this study, we aimed to investigate the changes in BK, B1R and des-Arg9-BK levels in the serum and brain tissues of patients with MMD and explore the underlying mechanism of these markers in MMD. We obtained the serum samples and superficial temporal artery (STA) tissue of patients with MMD from the Department of Neurosurgery of the Jining First People's Hospital. First, we measured BK, des-Arg9-BK and B1R levels in the serum of patients by means of ELISA. Next, we performed immunofluorescence to determine B1R expression in STA tissues. Finally, we determined the underlying mechanism through Western blot, angiogenesis assay, immunofluorescence, transendothelial electrical resistance and transcytosis assays. Our results demonstrated a significant increase in the BK, des-Arg9-BK and B1R levels in the serum of patients with MMD compared to healthy controls. Furthermore, an increase in the B1R expression level was observed in the STA tissues of patients with MMD. BK and des-Arg9-BK could promote the migratory and proliferative abilities of bEnd.3 cells and inhibited the formation of bEnd.3 cell tubes. In vitro BBB model showed that BK and des-Arg9-BK could reduce claudin-5, ZO-1 and occluding expression and BBB disruption. To the best of our knowledge, our results show an increase in BK and B1R levels in the serum and STA tissues of patients with MMD. BK and Des-Arg9-BK could inhibit angiogenesis, promote migratory and proliferative capacities of cells, and disrupt BBB integrity. Therefore, regulating BK, des-Arg9-BK and B1R levels in the serum and the brain could be potential strategies for treating patients with MMD.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : China International Medical Foundation
ID : Z-2018-35-2002
Organisme : National Natural Science Foundation of China
ID : 81602846
Organisme : National Natural Science Foundation of China
ID : 82272253
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2021MH145
Organisme : Taishan Scholar Project of Shandong Province
ID : tsqn201812159
Organisme : Traditional Chinese Medicine Science and Technology Development Plan of Shandong Province
ID : M-2022066
Informations de copyright
© 2023 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.
Références
Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360(12):1226-1237. doi:10.1056/NEJMra0804622
Shang S, Zhou D, Ya J, et al. Progress in moyamoya disease. Neurosurg Rev. 2020;43(2):371-382. doi:10.1007/s10143-018-0994-5
Goto Y, Yonekawa Y. Worldwide distribution of moyamoya disease. Neurol Med Chir. 1992;32(12):883-886. doi:10.2176/nmc.32.883
Wälchli T, Wacker A, Frei K, et al. Wiring the vascular network with neural cues: a CNS perspective. Neuron. 2015;87(2):271-296. doi:10.1016/j.neuron.2015.06.038
Tata M, Ruhrberg C. Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signal. 2018;2(1):Ns20170139. doi:10.1042/ns20170139
Lim M, Cheshier S, Steinberg GK. New vessel formation in the central nervous system during tumor growth, vascular malformations, and Moyamoya. Curr Neurovasc Res. 2006;3(3):237-245. doi:10.2174/156720206778018730
Chen Y, Tang M, Li H, Liu H, Wang J, Huang J. TGFβ1 as a predictive biomarker for collateral formation within ischemic Moyamoya disease. Front Neurol. 2022;13:899470. doi:10.3389/fneur.2022.899470
Yu HS, Wang SW, Chang AC, et al. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells. Biochem Pharmacol. 2014;87(2):243-253. doi:10.1016/j.bcp.2013.10.016
Li P, Kondo T, Numaguchi Y, et al. Role of bradykinin, nitric oxide, and angiotensin II type 2 receptor in imidapril-induced angiogenesis. Hypertension. 2008;51(2):252-258. doi:10.1161/hypertensionaha.107.097394
Kahn R, Hellmark T, Leeb-Lundberg LM, et al. Neutrophil-derived proteinase 3 induces kallikrein-independent release of a novel vasoactive kinin. J Immunol. 2009;182(12):7906-7915. doi:10.4049/jimmunol.0803624
Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27-77. doi:10.1124/pr.57.1.2
Colman RW. Regulation of angiogenesis by the kallikrein-kinin system. Curr Pharm Des. 2006;12(21):2599-2607. doi:10.2174/138161206777698710
Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(3):L237-L249. doi:10.1152/ajplung.00390.2014
Cyr M, Lepage Y, Blais C Jr, et al. Bradykinin and des-Arg(9)-bradykinin metabolic pathways and kinetics of activation of human plasma. Am J Physiol Heart Circ Physiol. 2001;281(1):H275-H283. doi:10.1152/ajpheart.2001.281.1.H275
Ni XT, Wang WS, Liu Y, et al. The bradykinin system contributes to the regulation of prostaglandin-Endoperoxide synthase 2 expression in human amnion fibroblasts: implications for term and preterm birth. Front Endocrinol. 2022;13:873727. doi:10.3389/fendo.2022.873727
Wu J, Akaike T, Hayashida K, et al. Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer. 2002;98(1):29-35. doi:10.1002/ijc.10142
Narducci A, Yasuyuki K, Onken J, Blecharz K, Vajkoczy P. In vivo demonstration of blood-brain barrier impairment in Moyamoya disease. Acta Neurochir. 2019;161(2):371-378. doi:10.1007/s00701-019-03811-w
Huang L, Liu M, Jiang W, et al. Bradykinin/bradykinin 1 receptor promotes brain microvascular endothelial cell permeability and proinflammatory cytokine release by downregulating Wnt3a. J Biochem Mol Toxicol. 2022;36(12):e23213. doi:10.1002/jbt.23213
Wang W, Zhang M, Zhang Q, Mohammadniaei M, Shen J, Sun Y. Brain-targeted antigen-generating nanoparticles improve glioblastoma prognosis. J Control Release. 2022;352:399-410. doi:10.1016/j.jconrel.2022.10.037
Fukui M. Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis ('moyamoya' disease). Research committee on spontaneous occlusion of the circle of Willis (Moyamoya disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg. 1997;99(Suppl 2):S238-S240.
Dai D, Lu Q, Huang Q, et al. Serum miRNA signature in Moyamoya disease. PLoS One. 2014;9(8):e102382. doi:10.1371/journal.pone.0102382
Li YC, Li Y, Zhang YN, et al. Muscone and (+)-Borneol cooperatively strengthen CREB induction of Claudin 5 in IL-1β-induced endothelium injury. Antioxidants. 2022;11(8):1455. doi:10.3390/antiox11081455
Chen F, Ohashi N, Li W, Eckman C, Nguyen JH. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology. 2009;50(6):1914-1923. doi:10.1002/hep.23203
DeCicco-Skinner KL, Henry GH, Cataisson C, et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp. 2014;91:e51312. doi:10.3791/51312
Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009;12(3):267-274. doi:10.1007/s10456-009-9146-4
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch. 2015;467(2):201-212. doi:10.1007/s00424-014-1519-x
Wiggers GA, Furieri LB, Briones AM, et al. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations. Neurotoxicology. 2016;53:282-289. doi:10.1016/j.neuro.2016.02.010
Ji B, Cheng B, Pan Y, Wang C, Chen J, Bai B. Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother. 2017;94:1057-1063. doi:10.1016/j.biopha.2017.08.042
Tsuda K. Role of bradykinin and catecholamines in cerebral infarction and brain edema. Stroke. 2009;40(4):e103. doi:10.1161/strokeaha.109.547752
Mugisho OO, Robilliard LD, Nicholson LFB, Graham ES, O'Carroll SJ. Bradykinin receptor-1 activation induces inflammation and increases the permeability of human brain microvascular endothelial cells. Cell Biol Int. 2020;44(1):343-351. doi:10.1002/cbin.11232
Han W, Jin F, Zhang H, et al. Association of Brain-gut Peptides with inflammatory cytokines in moyamoya disease. Mediat Inflamm. 2020;2020:5847478. doi:10.1155/2020/5847478
Newman PJ, Berndt MC, Gorski J, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219-1222. doi:10.1126/science.1690453
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol. 2019;17(1):44. doi:10.1186/s12957-019-1570-3
Scharfstein J, Ramos PIP, Barral-Netto M. G protein-coupled Kinin receptors and immunity against pathogens. Adv Immunol. 2017;136:29-84. doi:10.1016/bs.ai.2017.05.007
Ishihara K, Hayash I, Yamashina S, Majima M. A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol. 2001;87(4):318-326. doi:10.1254/jjp.87.318
Guo YL, Colman RW. Two faces of high-molecular-weight kininogen (HK) in angiogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J Thromb Haemost. 2005;3(4):670-676. doi:10.1111/j.1538-7836.2005.01218.x
Wang G, Sun J, Liu G, Fu Y, Zhang X. Bradykinin promotes cell proliferation, migration, invasion, and tumor growth of gastric cancer through ERK signaling pathway. J Cell Biochem. 2017;118(12):4444-4453. doi:10.1002/jcb.26100
Wang W, Zhou Y, Wei R, et al. Bradykinin promotes proliferation, migration, and invasion of cervical cancer cells through STAT3 signaling pathways. Oncol Rep. 2019;42(6):2521-2527. doi:10.3892/or.2019.7380
Lu X, Huang Y, Zhou P, Hui P, Wang Z. Decreased cortical perfusion in areas with blood-brain barrier dysfunction in Moyamoya disease. Acta Neurochir. 2020;162(10):2565-2572. doi:10.1007/s00701-020-04480-w