Therapeutic Effects of Geranium Oil in MPTP-Induced Parkinsonian Mouse Model.


Journal

Plant foods for human nutrition (Dordrecht, Netherlands)
ISSN: 1573-9104
Titre abrégé: Plant Foods Hum Nutr
Pays: Netherlands
ID NLM: 8803554

Informations de publication

Date de publication:
Dec 2023
Historique:
accepted: 05 10 2023
medline: 27 11 2023
pubmed: 11 10 2023
entrez: 11 10 2023
Statut: ppublish

Résumé

Parkinson's disease (PD) is an incurable neurodegenerative disease characterized by motor and non-motor disabilities resulting from neuronal cell death in the substantia nigra and striatum. Microglial activation and oxidative stress are two of the primary mechanisms driving that neuronal death. Here, we evaluated the effects of geranium oil on 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) mouse model for PD, on microglial activation, and oxidative stress. We demonstrate that oral treatment with geranium oil improved motor performance in this model. The therapeutic effects of geranium oil were observed as a significant increase in rotarod latency and distance among the mice treated with geranium oil, as compared to vehicle-treated MPTP mice. Geranium oil also prevented dopaminergic neuron death in the substantia nigra of the treated mice. These therapeutic effects can be partially attributed to the antioxidant and anti-inflammatory properties of geranium oil, which were observed as attenuated accumulation of reactive oxygen species and inhibition of the secretion of proinflammatory cytokines from geranium oil-treated activated microglial cells. A repeated-dose oral toxicity study showed that geranium oil is not toxic to mice. In light of that finding and since geranium oil is defined by the FDA as generally recognized as safe (GRAS), we do not foresee any toxicity problems in the future and suggest that geranium oil may be a safe and effective oral treatment for PD. Since the MPTP model is only one of the preclinical models for PD, further studies are needed to confirm that geranium oil can be used to prevent or treat PD.

Identifiants

pubmed: 37819493
doi: 10.1007/s11130-023-01112-3
pii: 10.1007/s11130-023-01112-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

768-775

Subventions

Organisme : Chief Scientist of the Ministry of Agriculture
ID : 421-0135-09

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36:1–12. https://doi.org/10.1016/j.cger.2019.08.002
doi: 10.1016/j.cger.2019.08.002 pubmed: 31733690
Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T (2021) Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 20:559–572. https://doi.org/10.1016/S1474-4422(21)00061-2
doi: 10.1016/S1474-4422(21)00061-2 pubmed: 34146514
Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Miliukhina IV, Bernadotte A (2018) Interleukin-1beta, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-alpha levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell Immunol 327:77–82. https://doi.org/10.1016/j.cellimm.2018.02.011
doi: 10.1016/j.cellimm.2018.02.011 pubmed: 29478949
Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1beta and tumor necrosis factor-alpha: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53. https://doi.org/10.3389/fncel.2013.00053
doi: 10.3389/fncel.2013.00053 pubmed: 23641196 pmcid: 3638129
More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm 2013:952375. https://doi.org/10.1155/2013/952375
doi: 10.1155/2013/952375 pubmed: 23935251 pmcid: 3712244
Pajares M, A IR, Manda G, Bosca L, Cuadrado A (2020) Inflammation in Parkinson’s disease mechanisms and therapeutic implications. Cells 9. https://doi.org/10.3390/cells9071687
Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2015) The relation between alpha-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302:47–58. https://doi.org/10.1016/j.neuroscience.2015.02.008
doi: 10.1016/j.neuroscience.2015.02.008 pubmed: 25684748
Vesely B, Dufek M, Thon V, Brozman M, Kiralova S, Halaszova T, Koritakova E, Rektor I (2018) Interleukin 6 and complement serum level study in Parkinson’s disease. J Neural Transm (Vienna) 125:885–881. https://doi.org/10.1007/s00702-018-1857-5
doi: 10.1007/s00702-018-1857-5
Zhang QS, Heng Y, Yuan YH, Chen NH (2017) Pathological alpha-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol Lett 265:30–37. https://doi.org/10.1016/j.toxlet.2016.11.002
doi: 10.1016/j.toxlet.2016.11.002 pubmed: 27865851
Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L (2018) The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s Disease. Parkinsons Dis 2018:9163040. https://doi.org/10.1155/2018/9163040
doi: 10.1155/2018/9163040 pubmed: 30245802 pmcid: 6139203
Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10:53. https://doi.org/10.1186/s13041-017-0340-9
doi: 10.1186/s13041-017-0340-9 pubmed: 29183391 pmcid: 5706368
Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536. https://doi.org/10.1007/s11064-014-1443-7
doi: 10.1007/s11064-014-1443-7 pubmed: 25403619
Yadav SK, Rai SN, Singh SP (2017) Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model. J Chem Neuroanat 80:1–10. https://doi.org/10.1016/j.jchemneu.2016.11.00
doi: 10.1016/j.jchemneu.2016.11.00 pubmed: 27919828
Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J Chem Neuroanat 71:41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002
doi: 10.1016/j.jchemneu.2015.12.002 pubmed: 26686287
Ramsey JT, Shropshire BC, Nagy TR, Chambers KD, Li Y, Korach KS (2020) Essential oils and health. Yale J Biol Med 93:291–305
pubmed: 32607090 pmcid: 7309671
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK (2018) Plant extracts and phytochemicals targeting alpha-synuclein aggregation in Parkinson’s Disease Models. Front Pharmacol 9:1555. https://doi.org/10.3389/fphar.2018.01555
doi: 10.3389/fphar.2018.01555 pubmed: 30941047
Shahpiri Z, Bahramsoltani R, Hosein Farzaei M, Farzaei F, Rahimi R (2016) Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review. Rev Neurosci 27:651–668. https://doi.org/10.1515/revneuro-2016-0004
doi: 10.1515/revneuro-2016-0004 pubmed: 27124673
Williamson EM (2001) Synergy and other interactions in phytomedicines. Phytomedicine 8:401–409
doi: 10.1078/0944-7113-00060 pubmed: 11695885
Fekri N, El Amir D, Owis A, AbouZid S (2021) Studies on essential oil from rose-scented geranium, Pelargonium graveolens L’Herit. (Geraniaceae). Nat Prod Res 35:2593–2597. https://doi.org/10.1080/14786419.2019.1682581
doi: 10.1080/14786419.2019.1682581 pubmed: 31679416
Elmann A, Mordechay S, Rindner M, Ravid U (2010) Anti-neuroinflammatory effects of geranium oil in microglial cells. J Funct Foods 2:17–22. https://doi.org/10.1016/j.jff.2009.12.001
doi: 10.1016/j.jff.2009.12.001
Lis-Balchin M (2002) Geranium and pelargonium. Taylor & Francis Inc, London and Ney York
doi: 10.1201/9780203216538
Abe S, Maruyama N, Hayama K, Inouye S, Oshima H, Yamaguchi H (2004) Suppression of neutrophil recruitment in mice by geranium essential oil. Mediators Inflamm 2004 13:21–24. https://doi.org/10.1080/09629350410001664798
doi: 10.1080/09629350410001664798
Maruyama N, Ishibashi H, Hu W, Morofuji S, Inouye S, Yamaguchi H, Abe S (2006) Suppression of carrageenan- and collagen II-induced inflammation in mice by geranium oil. Mediators Inflamm 2006:62537. https://doi.org/10.1155/MI/2006/62537
doi: 10.1155/MI/2006/62537 pubmed: 16951493 pmcid: 1592600
Maruyama N, Sekimoto Y, Ishibashi H, Inouye S, Oshima H, Yamaguchi H, Abe S (2005) Suppression of neutrophil accumulation in mice by cutaneous application of geranium essential oil. J Inflamm (Lond) 2:1. https://doi.org/10.1186/1476-9255-2-1
doi: 10.1186/1476-9255-2-1 pubmed: 15813994
Rai SN, Singh P (2020) Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanat 104:101752. https://doi.org/10.1016/j.jchemneu.2020.101752
doi: 10.1016/j.jchemneu.2020.101752 pubmed: 31996329
Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907
doi: 10.1021/jf0715166 pubmed: 17902627
Ferrari E, Cardinale A, Picconi B, Gardoni F (2020) From cell lines to pluripotent stem cells for modelling Parkinson’s Disease. J Neurosci Methods 340:108741. https://doi.org/10.1016/j.jneumeth.2020.108741
doi: 10.1016/j.jneumeth.2020.108741 pubmed: 32311374
Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic and clin Pharmacy 7:27–31
doi: 10.4103/0976-0105.177703
Shan S, Tian L, Fang R (2019) Chlorogenic acid exerts beneficial effects in 6-hydroxydopamine-induced neurotoxicity by inhibition of endoplasmic reticulum stress. Med Sci Monit 25:453–459.
doi: 10.12659/MSM.911166 pubmed: 30645211 pmcid: 6342059
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R (2021) Dopamine transporter imaging, current status of a potential biomarker: a comprehensive review. Int J Mol Sci 22. https://doi.org/10.3390/ijms222011234

Auteurs

Alona Telerman (A)

Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel.

Uzi Ravid (U)

Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.

Nativ Dudai (N)

Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.

Anat Elmann (A)

Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel. aelmann@volcani.agri.gov.il.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH