Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis.
Aging
Aging-related diseases
Mitochondrial biogenesis
Mitochondrial quality
Mitophagy
Mitophagy receptors
Journal
Journal of biomedical science
ISSN: 1423-0127
Titre abrégé: J Biomed Sci
Pays: England
ID NLM: 9421567
Informations de publication
Date de publication:
12 Oct 2023
12 Oct 2023
Historique:
received:
17
04
2023
accepted:
13
09
2023
medline:
13
10
2023
pubmed:
12
10
2023
entrez:
11
10
2023
Statut:
epublish
Résumé
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Identifiants
pubmed: 37821940
doi: 10.1186/s12929-023-00975-7
pii: 10.1186/s12929-023-00975-7
pmc: PMC10568841
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
86Subventions
Organisme : National Natural Science Foundation of China
ID : 32230046
Organisme : National Natural Science Foundation of China
ID : 32293212
Organisme : National Natural Science Foundation of China
ID : 92254301
Organisme : National Natural Science Foundation of China
ID : 32170780
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2020YFA0803702
Organisme : Project for Young Scientists in Basic Research of the Chinese Academy of Sciences
ID : YSBR-075
Organisme : Natural Science Foundation of Tianjin
ID : 20JCYBJC01210
Informations de copyright
© 2023. National Science Council of the Republic of China (Taiwan).
Références
McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–560.
pubmed: 16860735
doi: 10.1016/j.cub.2006.06.054
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
pubmed: 19061483
doi: 10.1042/BJ20081386
Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–12.
pubmed: 9721092
doi: 10.1126/science.281.5381.1309
Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258(5 Pt 1):C755–786.
pubmed: 2185657
doi: 10.1152/ajpcell.1990.258.5.C755
Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions. Expert Rev Hematol. 2017;10(1):65–79.
pubmed: 27911100
doi: 10.1080/17474086.2016.1268047
Dong JYF, Lin J, He H, Song Z. The metabolism and function of phospholipids in mitochondria. Mitochondrial Commun. 2023;1:2–12.
doi: 10.1016/j.mitoco.2022.10.002
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders: a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–77.
pubmed: 27836629
doi: 10.1016/j.bbadis.2016.11.010
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.
pubmed: 17051205
doi: 10.1038/nature05292
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, et al. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med. 2018;6(12):256.
pubmed: 30069458
pmcid: 6046286
doi: 10.21037/atm.2018.06.21
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.
pubmed: 23442817
pmcid: 3599349
doi: 10.1186/1756-8722-6-19
Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.
pubmed: 23001348
pmcid: 4371788
doi: 10.1038/nrc3365
Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E. Mitochondria in hematopoiesis and hematological diseases. Oncogene. 2006;25(34):4757–67.
pubmed: 16892088
doi: 10.1038/sj.onc.1209606
Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8(11):870–9.
pubmed: 17928812
doi: 10.1038/nrm2275
Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2017;284(2):183–95.
pubmed: 27462821
doi: 10.1111/febs.13820
Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–22.
pubmed: 30154567
doi: 10.1038/s41556-018-0176-2
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84.
pubmed: 20533901
doi: 10.1042/bse0470069
Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012;23(9):459–66.
pubmed: 22817841
pmcid: 3580164
doi: 10.1016/j.tem.2012.06.006
Rich PR, Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010;47:1–23.
pubmed: 20533897
doi: 10.1042/bse0470001
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022;23(2):141–61.
pubmed: 34621061
doi: 10.1038/s41580-021-00415-0
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep. 2018. https://doi.org/10.1042/BSR20171492 .
doi: 10.1042/BSR20171492
pubmed: 30201689
pmcid: 6167499
Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69.
pubmed: 22729857
doi: 10.1007/978-1-4614-3573-0_6
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–38.
pubmed: 18391175
doi: 10.1152/physrev.00025.2007
Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond B Biol Sci. 2020;375(1801):20190415.
pubmed: 32362256
pmcid: 7209953
doi: 10.1098/rstb.2019.0415
Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Mol Cell. 2004;14(1):1–15.
pubmed: 15068799
doi: 10.1016/S1097-2765(04)00179-0
Virbasius JV, Virbasius CA, Scarpulla RC. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 1993;7(3):380–92.
pubmed: 8383622
doi: 10.1101/gad.7.3.380
Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 1990;4(6):1023–34.
pubmed: 2166701
doi: 10.1101/gad.4.6.1023
Popov LD. Mitochondrial biogenesis: an update. J Cell Mol Med. 2020;24(9):4892–9.
pubmed: 32279443
pmcid: 7205802
doi: 10.1111/jcmm.15194
Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576(1–2):1–14.
pubmed: 12031478
Evans MJ, Scarpulla RC. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem. 1989;264(24):14361–8.
pubmed: 2547796
doi: 10.1016/S0021-9258(18)71686-4
Chau CM, Evans MJ, Scarpulla RC. Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2 alpha, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J Biol Chem. 1992;267(10):6999–7006.
pubmed: 1348057
doi: 10.1016/S0021-9258(19)50527-0
Blesa JR, Prieto-Ruiz JA, Abraham BA, Harrison BL, Hegde AA, Hernandez-Yago J. NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene. Biochem Cell Biol. 2008;86(1):46–56.
pubmed: 18364745
doi: 10.1139/O07-151
Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91(4):1309–13.
pubmed: 8108407
pmcid: 43147
doi: 10.1073/pnas.91.4.1309
Watanabe H, Imai T, Sharp PA, Handa H. Identification of two transcription factors that bind to specific elements in the promoter of the adenovirus early-region 4. Mol Cell Biol. 1988;8(3):1290–300.
pubmed: 3367909
pmcid: 363275
Rosmarin AG, Resendes KK, Yang Z, McMillan JN, Fleming SL. GA-binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and protein-protein interactions. Blood Cells Mol Dis. 2004;32(1):143–54.
pubmed: 14757430
doi: 10.1016/j.bcmd.2003.09.005
Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A. 2004;101(17):6472–7.
pubmed: 15087503
pmcid: 404069
doi: 10.1073/pnas.0308686101
Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Liu Y, Chen Q, et al. PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion. 2010;10(5):516–27.
pubmed: 20561910
doi: 10.1016/j.mito.2010.05.012
Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101(17):6570–5.
pubmed: 15100410
pmcid: 404086
doi: 10.1073/pnas.0401401101
Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, Evans RM, Blanchette M, Giguere V. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5(5):345–56.
pubmed: 17488637
doi: 10.1016/j.cmet.2007.03.007
De Vitto H, Ryu J, Calderon-Aparicio A, Monts J, Dey R, Chakraborty A, Lee MH, Bode AM, Dong Z. Estrogen-related receptor alpha directly binds to p53 and cooperatively controls colon cancer growth through the regulation of mitochondrial biogenesis and function. Cancer Metab. 2020;8(1):28.
pubmed: 33303020
pmcid: 7731476
doi: 10.1186/s40170-020-00234-5
Villena JA, Hock MB, Chang WY, Barcas JE, Giguere V, Kralli A. Orphan nuclear receptor estrogen-related receptor alpha is essential for adaptive thermogenesis. Proc Natl Acad Sci U S A. 2007;104(4):1418–23.
pubmed: 17229846
pmcid: 1783094
doi: 10.1073/pnas.0607696104
Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M. Integration and diversity of the regulatory network composed of maf and CNC families of transcription factors. Gene. 2002;294(1–2):1–12.
pubmed: 12234662
doi: 10.1016/S0378-1119(02)00788-6
Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003;8(4):379–91.
pubmed: 12653965
doi: 10.1046/j.1365-2443.2003.00640.x
Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23(22):8137–51.
pubmed: 14585973
pmcid: 262403
doi: 10.1128/MCB.23.22.8137-8151.2003
Taguchi K, Yamamoto M. The KEAP1-NRF2 system in Cancer. Front Oncol. 2017;7:85.
pubmed: 28523248
pmcid: 5415577
doi: 10.3389/fonc.2017.00085
Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103(11):1232–40.
pubmed: 18845810
pmcid: 2694963
doi: 10.1161/01.RES.0000338597.71702.ad
Hayashi G, Jasoliya M, Sahdeo S, Sacca F, Pane C, Filla A, Marsili A, Puorro G, Lanzillo R, Brescia Morra V, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum Mol Genet. 2017;26(15):2864–73.
pubmed: 28460056
pmcid: 6251607
doi: 10.1093/hmg/ddx167
Chen H, Hu Y, Fang Y, Djukic Z, Yamamoto M, Shaheen NJ, Orlando RC, Chen X. Nrf2 deficiency impairs the barrier function of mouse oesophageal epithelium. Gut. 2014;63(5):711–9.
pubmed: 23676441
doi: 10.1136/gutjnl-2012-303731
Merry TL, Ristow M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol. 2016;594(18):5195–207.
pubmed: 27094017
pmcid: 5023720
doi: 10.1113/JP271957
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.
pubmed: 9529258
doi: 10.1016/S0092-8674(00)81410-5
Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728–35.
pubmed: 17018837
doi: 10.1210/er.2006-0037
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.
pubmed: 20933024
doi: 10.1016/j.bbamcr.2010.09.019
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408.
pubmed: 17055439
doi: 10.1016/j.cell.2006.09.024
Bouchez C, Devin A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cells. 2019. https://doi.org/10.3390/cells8040287 .
doi: 10.3390/cells8040287
pubmed: 30934711
pmcid: 6523352
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.
pubmed: 10412986
doi: 10.1016/S0092-8674(00)80611-X
Sen N, Satija YK, Das S. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell. 2011;44(4):621–34.
pubmed: 22099309
doi: 10.1016/j.molcel.2011.08.044
Wei P, Pan D, Mao C, Wang YX. RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1alpha and modulates brown fat cell metabolism. Mol Cell Biol. 2012;32(2):266–75.
pubmed: 22064484
pmcid: 3255768
doi: 10.1128/MCB.05674-11
LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003.
pubmed: 25241037
pmcid: 4369153
doi: 10.1038/ncb3039
Oberkofler H, Linnemayr V, Weitgasser R, Klein K, Xie M, Iglseder B, Krempler F, Paulweber B, Patsch W. Complex haplotypes of the PGC-1alpha gene are associated with carbohydrate metabolism and type 2 diabetes. Diabetes. 2004;53(5):1385–93.
pubmed: 15111510
doi: 10.2337/diabetes.53.5.1385
Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.
pubmed: 14726475
doi: 10.1161/01.RES.0000117088.36577.EB
Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT, Arning L. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener. 2011;6(1):32.
pubmed: 21595933
pmcid: 3117738
doi: 10.1186/1750-1326-6-32
Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, Mirzaei N, Irvine EE, Mazarakis ND, Sastre M. PPARgamma-coactivator-1alpha gene transfer reduces neuronal loss and amyloid-beta generation by reducing beta-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2016;113(43):12292–7.
pubmed: 27791018
pmcid: 5087021
doi: 10.1073/pnas.1606171113
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A. 2006;103(26):10086–91.
pubmed: 16775082
pmcid: 1502510
doi: 10.1073/pnas.0603615103
Chambers JM, Wingert RA. PGC-1alpha in disease: recent renal insights into a versatile metabolic regulator. Cells. 2020. https://doi.org/10.3390/cells9102234 .
doi: 10.3390/cells9102234
pubmed: 33238582
pmcid: 7700559
Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277(3):1645–8.
pubmed: 11733490
doi: 10.1074/jbc.C100631200
Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3(5):333–41.
pubmed: 16679291
doi: 10.1016/j.cmet.2006.04.002
Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22(14):1948–61.
pubmed: 18628400
pmcid: 2492740
doi: 10.1101/gad.1661708
Andersson U, Scarpulla RC. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol. 2001;21(11):3738–49.
pubmed: 11340167
pmcid: 87014
doi: 10.1128/MCB.21.11.3738-3749.2001
Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol. 2006;26(20):7409–19.
pubmed: 16908542
pmcid: 1636882
doi: 10.1128/MCB.00585-06
Vercauteren K, Gleyzer N, Scarpulla RC. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 2008;283(18):12102–11.
pubmed: 18343819
pmcid: 2335357
doi: 10.1074/jbc.M710150200
Vercauteren K, Gleyzer N, Scarpulla RC. Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria. J Biol Chem. 2009;284(4):2307–19.
pubmed: 19036724
pmcid: 2629116
doi: 10.1074/jbc.M806434200
Rowe GC, Patten IS, Zsengeller ZK, El-Khoury R, Okutsu M, Bampoh S, Koulisis N, Farrell C, Hirshman MF, Yan Z, et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep. 2013;3(5):1449–56.
pubmed: 23707060
pmcid: 3688451
doi: 10.1016/j.celrep.2013.04.023
Lai L, Wang M, Martin OJ, Leone TC, Vega RB, Han X, Kelly DP. A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. J Biol Chem. 2014;289(4):2250–9.
pubmed: 24337569
doi: 10.1074/jbc.M113.523654
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22.
pubmed: 17609368
pmcid: 1924552
doi: 10.1073/pnas.0705070104
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.
pubmed: 19262508
pmcid: 3616311
doi: 10.1038/nature07813
Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296(5566):349–52.
pubmed: 11951046
doi: 10.1126/science.1071163
Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO. Raising Ca2 + in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J. 2003;17(6):675–81.
pubmed: 12665481
doi: 10.1096/fj.02-0951com
Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004;24(7):3057–67.
pubmed: 15024092
pmcid: 371122
doi: 10.1128/MCB.24.7.3057-3067.2004
Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell. 2001;8(5):971–82.
pubmed: 11741533
doi: 10.1016/S1097-2765(01)00390-2
Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci U S A. 2001;98(17):9713–8.
pubmed: 11481440
pmcid: 55518
doi: 10.1073/pnas.171184698
Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793–9.
pubmed: 17488713
doi: 10.1074/jbc.M611252200
Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59(4):675–80.
pubmed: 2573431
doi: 10.1016/0092-8674(89)90013-5
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–83.
pubmed: 11557984
doi: 10.1038/35093131
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A. 2003;100(12):7111–6.
pubmed: 12764228
pmcid: 165838
doi: 10.1073/pnas.1232352100
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73.
pubmed: 23725295
pmcid: 3894687
doi: 10.1089/ars.2013.5371
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.
pubmed: 19653858
pmcid: 2831538
doi: 10.1146/annurev-genet-102808-114910
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.
pubmed: 28596378
pmcid: 5494474
doi: 10.15252/embj.201796697
Mizushima N, Yoshimori T, Ohsumi Y. The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.
pubmed: 21801009
doi: 10.1146/annurev-cellbio-092910-154005
Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-022-00542-2 .
doi: 10.1038/s41580-022-00542-2
pubmed: 36302887
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.
pubmed: 22078875
doi: 10.1016/j.cell.2011.10.026
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al. Autophagy in major human diseases. EMBO J. 2021;40(19):e108863.
pubmed: 34459017
pmcid: 8488577
doi: 10.15252/embj.2021108863
Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42.
pubmed: 30633901
pmcid: 6347410
doi: 10.1016/j.cell.2018.09.048
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.
pubmed: 18305538
pmcid: 2670399
doi: 10.1038/nature06639
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41.
pubmed: 24366339
doi: 10.1038/cr.2013.168
Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3):233–42.
pubmed: 29476151
pmcid: 6028034
doi: 10.1038/s41556-018-0037-z
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3–5.
pubmed: 15798367
doi: 10.1089/rej.2005.8.3
Schofield JH, Schafer ZT. Mitochondrial reactive oxygen species and mitophagy: a complex and nuanced relationship. Antioxid Redox Signal. 2021;34(7):517–30.
pubmed: 32079408
doi: 10.1089/ars.2020.8058
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40(3):e104705.
pubmed: 33438778
pmcid: 7849173
doi: 10.15252/embj.2020104705
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42.
pubmed: 22743996
doi: 10.1038/cdd.2012.81
Liu L, Liao X, Wu H, Li Y, Zhu Y, Chen Q. Mitophagy and its contribution to metabolic and aging-associated disorders. Antioxid Redox Signal. 2020;32(12):906–27.
pubmed: 31969001
doi: 10.1089/ars.2019.8013
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem. 2020;402(1):73–88.
pubmed: 33544491
doi: 10.1515/hsz-2020-0231
Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta. 1998;1366(1–2):139–49.
pubmed: 9714780
doi: 10.1016/S0005-2728(98)00109-1
Chung CY, Singh K, Kotiadis VN, Valdebenito GE, Ahn JH, Topley E, Tan J, Andrews WD, Bilanges B, Pitceathly RDS, et al. Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation. Nat Commun. 2021;12(1):6409.
pubmed: 34737295
pmcid: 8568893
doi: 10.1038/s41467-021-26746-2
Dai Y, Zheng K, Clark J, Swerdlow RH, Pulst SM, Sutton JP, Shinobu LA, Simon DK. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet. 2014;23(3):637–47.
pubmed: 24101601
doi: 10.1093/hmg/ddt450
Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787–95.
pubmed: 24903109
pmcid: 4085769
doi: 10.1038/cr.2014.75
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett. 2021;595(8):1239–63.
pubmed: 33615465
doi: 10.1002/1873-3468.14060
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–85.
pubmed: 22267086
doi: 10.1038/ncb2422
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 2014;54(3):362–77.
pubmed: 24746696
doi: 10.1016/j.molcel.2014.02.034
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014;15(5):566–75.
pubmed: 24671035
pmcid: 4210082
doi: 10.1002/embr.201438501
Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, Wang X, Jin H, Wang J, Zhu Y, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy. 2014;10(10):1712–25.
pubmed: 25126723
pmcid: 4198357
doi: 10.4161/auto.29568
Ma K, Zhang Z, Chang R, Cheng H, Mu C, Zhao T, Chen L, Zhang C, Luo Q, Lin J, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ. 2020;27(3):1036–51.
pubmed: 31367011
doi: 10.1038/s41418-019-0396-4
Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima K, Hattori N et al. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J. 2018. 10.15252/embj.201798899
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016;12(4):689–702.
pubmed: 27050458
pmcid: 4836026
doi: 10.1080/15548627.2016.1151580
Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 2016;35(13):1368–84.
pubmed: 27145933
pmcid: 4864280
doi: 10.15252/embj.201593102
Chen Z, Liu L, Cheng Q, Li Y, Wu H, Zhang W, Wang Y, Sehgal SA, Siraj S, Wang X, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 2017;18(3):495–509.
pubmed: 28104734
pmcid: 5331199
doi: 10.15252/embr.201643309
Chai P, Cheng Y, Hou C, Yin L, Zhang D, Hu Y, Chen Q, Zheng P, Teng J, Chen J. USP19 promotes hypoxia-induced mitochondrial division via FUNDC1 at ER-mitochondria contact sites. J Cell Biol. 2021. https://doi.org/10.1083/jcb.202010006 .
doi: 10.1083/jcb.202010006
pubmed: 33978709
pmcid: 8127008
Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, et al. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep. 2023;24(4):e54731.
pubmed: 36847607
doi: 10.15252/embr.202254731
Lampert MA, Orogo AM, Najor RH, Hammerling BC, Leon LJ, Wang BJ, Kim T, Sussman MA, Gustafsson AB. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy. 2019;15(7):1182–98.
pubmed: 30741592
pmcid: 6613840
doi: 10.1080/15548627.2019.1580095
Wang C, Dai X, Wu S, Xu W, Song P, Huang K. FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis. Nat Commun. 2021;12(1):2616.
pubmed: 33972548
pmcid: 8110587
doi: 10.1038/s41467-021-22771-3
Li W, Li Y, Siraj S, Jin H, Fan Y, Yang X, Huang X, Wang X, Wang J, Liu L, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology. 2019;69(2):604–21.
pubmed: 30053328
doi: 10.1002/hep.30191
Yang A, Peng F, Zhu L, Li X, Ou S, Huang Z, Wu S, Peng C, Liu P, Kong Y. Melatonin inhibits triple-negative breast cancer progression through the Lnc049808-FUNDC1 pathway. Cell Death Dis. 2021;12(8):712.
pubmed: 34272359
pmcid: 8285388
doi: 10.1038/s41419-021-04006-x
Ren J, Sun M, Zhou H, Ajoolabady A, Zhou Y, Tao J, Sowers JR, Zhang Y. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv. 2020. https://doi.org/10.1126/sciadv.abc8561 .
doi: 10.1126/sciadv.abc8561
pubmed: 33246959
pmcid: 7695480
Fu T, Xu Z, Liu L, Guo Q, Wu H, Liang X, Zhou D, Xiao L, Liu L, Liu Y, et al. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity. Cell Rep. 2018;23(5):1357–72.
pubmed: 29719250
doi: 10.1016/j.celrep.2018.03.127
Wu H, Wang Y, Li W, Chen H, Du L, Liu D, Wang X, Xu T, Liu L, Chen Q. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy. 2019;15(11):1882–98.
pubmed: 30898010
pmcid: 6844496
doi: 10.1080/15548627.2019.1596482
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z, Zou MH. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 2017;136(23):2248–66.
pubmed: 28942427
pmcid: 5716911
doi: 10.1161/CIRCULATIONAHA.117.030235
Bi Y, Xu H, Wang X, Zhu H, Ge J, Ren J, Zhang Y. FUNDC1 protects against doxorubicin-induced cardiomyocyte PANoptosis through stabilizing mtDNA via interaction with TUFM. Cell Death Dis. 2022;13(12):1020.
pubmed: 36470869
pmcid: 9723119
doi: 10.1038/s41419-022-05460-x
Xu C, Cao Y, Liu R, Liu L, Zhang W, Fang X, Jia S, Ye J, Liu Y, Weng L, et al. Mitophagy-regulated mitochondrial health strongly protects the heart against cardiac dysfunction after acute myocardial infarction. J Cell Mol Med. 2022;26(4):1315–26.
pubmed: 35040256
pmcid: 8831983
doi: 10.1111/jcmm.17190
Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y, Cao F, Wang L, Pei Z, Ren J. Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166402.
pubmed: 35346820
doi: 10.1016/j.bbadis.2022.166402
Li Q, Liu Y, Huang Q, Yi X, Qin F, Zhong Z, Lin L, Yang H, Gong G, Wu W. Hypoxia acclimation protects against heart failure postacute myocardial infarction via Fundc1-mediated mitophagy. Oxid Med Cell Longev. 2022;2022:8192552.
pubmed: 35422895
pmcid: 9005280
Mao S, Tian S, Luo X, Zhou M, Cao Z, Li J. Overexpression of PLK1 relieved the myocardial ischemia-reperfusion injury of rats through inducing the mitophagy and regulating the p-AMPK/FUNDC1 axis. Bioengineered. 2021;12(1):2676–87.
pubmed: 34115550
pmcid: 8806532
doi: 10.1080/21655979.2021.1938500
Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D, Wang J, Liu L, Li W, Ma Q, et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife. 2016. https://doi.org/10.7554/eLife.21407 .
doi: 10.7554/eLife.21407
pubmed: 28005008
pmcid: 5218530
Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, Wang D, Gao J, Li Y, Liang J, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. Elife. 2021. https://doi.org/10.7554/eLife.64480 .
doi: 10.7554/eLife.64480
pubmed: 34586064
pmcid: 8563002
Yan M, Yu Y, Mao X, Feng J, Wang Y, Chen H, Xie K, Yu Y. Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner. Int Immunopharmacol. 2019;71:61–7.
pubmed: 30877875
doi: 10.1016/j.intimp.2019.03.021
Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther. 2019;4:56.
pubmed: 31839999
pmcid: 6895206
doi: 10.1038/s41392-019-0094-1
Cai Y, Yang E, Yao X, Zhang X, Wang Q, Wang Y, Liu J, Fan W, Yi K, Kang C, et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 2021;38:101792.
pubmed: 33212415
doi: 10.1016/j.redox.2020.101792
Li S, Zhou Y, Gu X, Zhang X, Jia Z. NLRX1/FUNDC1/NIPSNAP1-2 axis regulates mitophagy and alleviates intestinal ischaemia/reperfusion injury. Cell Prolif. 2021;54(3):e12986.
pubmed: 33432610
pmcid: 7941235
doi: 10.1111/cpr.12986
Wang J, Zhu P, Li R, Ren J, Zhou H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020;30:101415.
pubmed: 31901590
doi: 10.1016/j.redox.2019.101415
Wen W, Yu G, Liu W, Gu L, Chu J, Zhou X, Liu Y, Lai G. Silencing FUNDC1 alleviates chronic obstructive pulmonary disease by inhibiting mitochondrial autophagy and bronchial epithelium cell apoptosis under hypoxic environment. J Cell Biochem. 2019;120(10):17602–15.
pubmed: 31237014
doi: 10.1002/jcb.29028
Leermakers PA, Schols A, Kneppers AEM, Kelders M, de Theije CC, Lainscak M, Gosker HR. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Sci Rep. 2018;8(1):15007.
pubmed: 30302028
pmcid: 6177478
doi: 10.1038/s41598-018-33471-2
Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC, Saxena S, Gietz RD, Greenberg AH. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med. 1997;186(12):1975–83.
pubmed: 9396766
pmcid: 2199165
doi: 10.1084/jem.186.12.1975
Yasuda M, Theodorakis P, Subramanian T, Chinnadurai G. Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem. 1998;273(20):12415–21.
pubmed: 9575197
doi: 10.1074/jbc.273.20.12415
Matsushima M, Fujiwara T, Takahashi E, Minaguchi T, Eguchi Y, Tsujimoto Y, Suzumori K, Nakamura Y. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes Cancer. 1998;21(3):230–5.
pubmed: 9523198
doi: 10.1002/(SICI)1098-2264(199803)21:3<230::AID-GCC7>3.0.CO;2-0
Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001;61(18):6669–73.
pubmed: 11559532
Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A. 2000;97(16):9082–7.
pubmed: 10922063
pmcid: 16825
doi: 10.1073/pnas.97.16.9082
Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001;8(4):367–76.
pubmed: 11550088
doi: 10.1038/sj.cdd.4400810
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.
pubmed: 10891486
pmcid: 85997
doi: 10.1128/MCB.20.15.5454-5468.2000
Imazu T, Shimizu S, Tagami S, Matsushima M, Nakamura Y, Miki T, Okuyama A, Tsujimoto Y. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene. 1999;18(32):4523–9.
pubmed: 10467396
doi: 10.1038/sj.onc.1202722
Chen G, Cizeau J, Vande Velde C, Park JH, Bozek G, Bolton J, Shi L, Dubik D, Greenberg A. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem. 1999;274(1):7–10.
pubmed: 9867803
doi: 10.1074/jbc.274.1.7
Chen Y, Lewis W, Diwan A, Cheng EH, Matkovich SJ, Dorn GW. 2nd: dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci U S A. 2010;107(20):9035–42.
pubmed: 20418503
pmcid: 2889094
doi: 10.1073/pnas.0914013107
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–81.
pubmed: 19273585
pmcid: 2682037
doi: 10.1128/MCB.00166-09
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104(49):19500–5.
pubmed: 18048346
pmcid: 2148318
doi: 10.1073/pnas.0708818104
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454(7201):232–5.
pubmed: 18454133
pmcid: 2570948
doi: 10.1038/nature07006
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11(1):45–51.
pubmed: 20010802
doi: 10.1038/embor.2009.256
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 2012;287(23):19094–104.
pubmed: 22505714
pmcid: 3365942
doi: 10.1074/jbc.M111.322933
Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 2013;288(2):1099–113.
pubmed: 23209295
doi: 10.1074/jbc.M112.399345
Poole LP, Bock-Hughes A, Berardi DE, Macleod KF. ULK1 promotes mitophagy via phosphorylation and stabilization of BNIP3. Sci Rep. 2021;11(1):20526.
pubmed: 34654847
pmcid: 8519931
doi: 10.1038/s41598-021-00170-4
He YL, Li J, Gong SH, Cheng X, Zhao M, Cao Y, Zhao T, Zhao YQ, Fan M, Wu HT, et al. BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia. Cell Death Dis. 2022;13(11):966.
pubmed: 36396625
pmcid: 9672126
doi: 10.1038/s41419-022-05418-z
Rogov VV, Suzuki H, Marinkovic M, Lang V, Kato R, Kawasaki M, Buljubasic M, Sprung M, Rogova N, Wakatsuki S, et al. Phosphorylation of the mitochondrial autophagy receptor nix enhances its interaction with LC3 proteins. Sci Rep. 2017;7(1):1131.
pubmed: 28442745
pmcid: 5430633
doi: 10.1038/s41598-017-01258-6
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, Shen Z, Jiang L, Wang L, Yang W, et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy. 2017;13(10):1754–66.
pubmed: 28820284
pmcid: 5640199
doi: 10.1080/15548627.2017.1357792
Naeem S, Qi Y, Tian Y, Zhang Y. NIX compensates lost role of parkin in cd-induced mitophagy in HeLa cells through phosphorylation. Toxicol Lett. 2020;326:1–10.
pubmed: 32142837
doi: 10.1016/j.toxlet.2020.03.001
da Silva Rosa SC, Martens MD, Field JT, Nguyen L, Kereliuk SM, Hai Y, Chapman D, Diehl-Jones W, Aliani M, West AR, et al. BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation. Autophagy. 2021;17(9):2257–72.
pubmed: 33044904
doi: 10.1080/15548627.2020.1821548
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.
pubmed: 26146385
doi: 10.1038/ncomms8527
Bhujabal Z, Birgisdottir AB, Sjottem E, Brenne HB, Overvatn A, Habisov S, Kirkin V, Lamark T, Johansen T. FKBP8 recruits LC3A to mediate parkin-independent mitophagy. EMBO Rep. 2017;18(6):947–61.
pubmed: 28381481
pmcid: 5452039
doi: 10.15252/embr.201643147
Wei Y, Chiang WC, Sumpter R Jr., Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168(1–2):224–38. e210.
pubmed: 28017329
doi: 10.1016/j.cell.2016.11.042
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.
pubmed: 9560156
doi: 10.1038/33416
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5.
pubmed: 10888878
doi: 10.1038/77060
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60.
pubmed: 15087508
doi: 10.1126/science.1096284
Deng H, Dodson MW, Huang H, Guo M. The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008;105(38):14503–8.
pubmed: 18799731
pmcid: 2567186
doi: 10.1073/pnas.0803998105
Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105(5):1638–43.
pubmed: 18230723
pmcid: 2234197
doi: 10.1073/pnas.0709336105
Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem. 2011;286(13):11649–58.
pubmed: 21292769
pmcid: 3064217
doi: 10.1074/jbc.M110.144238
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441(7097):1157–61.
pubmed: 16672980
doi: 10.1038/nature04788
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441(7097):1162–6.
pubmed: 16672981
doi: 10.1038/nature04779
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.
pubmed: 19029340
pmcid: 2592826
doi: 10.1083/jcb.200809125
Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem. 2011;117(5):856–67.
pubmed: 21426348
doi: 10.1111/j.1471-4159.2011.07253.x
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191(5):933–42.
pubmed: 21115803
pmcid: 2995166
doi: 10.1083/jcb.201008084
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010;8(1):e1000298.
pubmed: 20126261
pmcid: 2811155
doi: 10.1371/journal.pbio.1000298
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al. PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy. J Cell Biol. 2010;189(2):211–21.
pubmed: 20404107
pmcid: 2856912
doi: 10.1083/jcb.200910140
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2012;2(5):120080.
pubmed: 22724072
pmcid: 3376738
doi: 10.1098/rsob.120080
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205(2):143–53.
pubmed: 24751536
pmcid: 4003245
doi: 10.1083/jcb.201402104
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014;460(1):127–39.
pubmed: 24660806
doi: 10.1042/BJ20140334
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510(7503):162–6.
pubmed: 24784582
doi: 10.1038/nature13392
Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria. Nat Commun. 2012;3:1016.
pubmed: 22910362
doi: 10.1038/ncomms2016
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL. PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906.
pubmed: 22078885
pmcid: 3261796
doi: 10.1016/j.cell.2011.10.018
Safiulina D, Kuum M, Choubey V, Gogichaishvili N, Liiv J, Hickey MA, Cagalinec M, Mandel M, Zeb A, Liiv M et al. Miro proteins prime mitochondria for parkin translocation and mitophagy. EMBO J. 2019. 10.15252/embj.201899384.
Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A. 2010;107(11):5018–23.
pubmed: 20194754
pmcid: 2841909
doi: 10.1073/pnas.0913485107
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19(24):4861–70.
pubmed: 20871098
pmcid: 3583518
doi: 10.1093/hmg/ddq419
Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A. 2014;111(42):E4439–4448.
pubmed: 25294927
pmcid: 4210283
doi: 10.1073/pnas.1405752111
Yamano K, Youle RJ. Two different axes CALCOCO2-RB1CC1 and OPTN-ATG9A initiate PRKN-mediated mitophagy. Autophagy. 2020;16(11):2105–7.
pubmed: 32892694
pmcid: 7595642
doi: 10.1080/15548627.2020.1815457
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–14.
pubmed: 26266977
pmcid: 5018156
doi: 10.1038/nature14893
Moore AS, Holzbaur EL. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A. 2016;113(24):E3349–3358.
pubmed: 27247382
pmcid: 4914160
doi: 10.1073/pnas.1523810113
Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113(15):4039–44.
pubmed: 27035970
pmcid: 4839414
doi: 10.1073/pnas.1523926113
Vargas JNS, Wang C, Bunker E, Hao L, Maric D, Schiavo G, Randow F, Youle RJ. Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol Cell. 2019;74(2):347–362e346.
pubmed: 30853401
pmcid: 6642318
doi: 10.1016/j.molcel.2019.02.010
Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J, Shoda T, Demizu Y, Naito M, Tanaka K, et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 2020. https://doi.org/10.1083/jcb.201912144 .
doi: 10.1083/jcb.201912144
pubmed: 32556086
pmcid: 7480101
Rojansky R, Cha MY, Chan DC. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife. 2016. https://doi.org/10.7554/eLife.17896 .
doi: 10.7554/eLife.17896
pubmed: 27852436
pmcid: 5127638
Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561(7722):258–62.
pubmed: 30135585
pmcid: 7362342
doi: 10.1038/s41586-018-0448-9
McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, Muqit MMK, Brooks SP, Ganley IG. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27(2):439–49. e435.
pubmed: 29337137
pmcid: 5807059
doi: 10.1016/j.cmet.2017.12.008
Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D, Kanki T. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy. 2015;11(2):332–43.
pubmed: 25831013
pmcid: 4502654
doi: 10.1080/15548627.2015.1023047
Chen J, Ren Y, Gui C, Zhao M, Wu X, Mao K, Li W, Zou F. Phosphorylation of parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T alpha-synuclein model of Parkinson’s disease. Cell Death Dis. 2018;9(6):700.
pubmed: 29899409
pmcid: 5999948
doi: 10.1038/s41419-018-0722-7
Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, Hu BX, Ye ZP, Li ZL, Mai J, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy. 2021;17(10):3011–29.
pubmed: 33213267
doi: 10.1080/15548627.2020.1850609
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.
pubmed: 18281291
pmcid: 2447655
doi: 10.1074/jbc.M800102200
Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, et al. HIF-1alpha-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020;36:101671.
pubmed: 32829253
pmcid: 7452120
doi: 10.1016/j.redox.2020.101671
Zhao JF, Rodger CE, Allen GFG, Weidlich S, Ganley IG. HIF1alpha-dependent mitophagy facilitates cardiomyoblast differentiation. Cell Stress. 2020;4(5):99–113.
pubmed: 32420530
pmcid: 7212530
doi: 10.15698/cst2020.05.220
Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS ONE. 2010;5(11):e15394.
pubmed: 21072212
pmcid: 2972217
doi: 10.1371/journal.pone.0015394
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.
pubmed: 21258367
pmcid: 3987946
doi: 10.1038/ncb2152
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.
pubmed: 21205641
doi: 10.1126/science.1196371
Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8(1):548.
pubmed: 28916822
pmcid: 5601463
doi: 10.1038/s41467-017-00520-9
Hung CM, Lombardo PS, Malik N, Brun SN, Hellberg K, Van Nostrand JL, Garcia D, Baumgart J, Diffenderfer K, Asara JM, et al. AMPK/ULK1-mediated phosphorylation of parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abg4544 .
doi: 10.1126/sciadv.abg4544
pubmed: 34730995
pmcid: 8565844
Iorio R, Celenza G, Petricca S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021. https://doi.org/10.3390/cells11010030 .
doi: 10.3390/cells11010030
pubmed: 35011593
pmcid: 8750607
Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Dela Cruz CS, Ahasic AM, et al. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;306(7):L604–619.
pubmed: 24487387
pmcid: 3962628
doi: 10.1152/ajplung.00272.2013
Scott I, Webster BR, Chan CK, Okonkwo JU, Han K, Sack MN. GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem. 2014;289(5):2864–72.
pubmed: 24356961
doi: 10.1074/jbc.M113.521641
Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res. 2016;60(4):383–93.
pubmed: 26882442
doi: 10.1111/jpi.12319
Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, et al. Thyroid hormone receptor and ERRalpha coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal. 2018. https://doi.org/10.1126/scisignal.aam5855 .
doi: 10.1126/scisignal.aam5855
pubmed: 30352947
pmcid: 6464114
Yau WW, Singh BK, Lesmana R, Zhou J, Sinha RA, Wong KA, Wu Y, Bay BH, Sugii S, Sun L, et al. Thyroid hormone (T(3)) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15(1):131–50.
pubmed: 30209975
doi: 10.1080/15548627.2018.1511263
Zhou D, Zhou M, Wang Z, Fu Y, Jia M, Wang X, Liu M, Zhang Y, Sun Y, Lu Y, et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 2019;10(7):524.
pubmed: 31285425
pmcid: 6614416
doi: 10.1038/s41419-019-1754-3
Sin J, Andres AM, Taylor DJ, Weston T, Hiraumi Y, Stotland A, Kim BJ, Huang C, Doran KS, Gottlieb RA. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12(2):369–80.
pubmed: 26566717
doi: 10.1080/15548627.2015.1115172
Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521(7553):525–8.
pubmed: 25896323
doi: 10.1038/nature14300
Dorn GW 2. Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res. 2010;3(4):374–83.
pubmed: 20559783
pmcid: 2900478
doi: 10.1007/s12265-010-9174-x
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702.
pubmed: 21376232
pmcid: 3063894
doi: 10.1016/j.cell.2011.02.010
Stevens DA, Lee Y, Kang HC, Lee BD, Lee YI, Bower A, Jiang H, Kang SU, Andrabi SA, Dawson VL, et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci U S A. 2015;112(37):11696–701.
pubmed: 26324925
pmcid: 4577198
doi: 10.1073/pnas.1500624112
Pirooznia SK, Yuan C, Khan MR, Karuppagounder SS, Wang L, Xiong Y, Kang SU, Lee Y, Dawson VL, Dawson TM. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener. 2020;15(1):17.
pubmed: 32138754
pmcid: 7057660
doi: 10.1186/s13024-020-00363-x
Kumar M, Acevedo-Cintron J, Jhaldiyal A, Wang H, Andrabi SA, Eacker S, Karuppagounder SS, Brahmachari S, Chen R, Kim H, et al. Defects in mitochondrial biogenesis drive mitochondrial alterations in PARKIN-deficient human dopamine neurons. Stem Cell Reports. 2020;15(3):629–45.
pubmed: 32795422
pmcid: 7486221
doi: 10.1016/j.stemcr.2020.07.013
Wasner K, Smajic S, Ghelfi J, Delcambre S, Prada-Medina CA, Knappe E, Arena G, Mulica P, Agyeah G, Rakovic A, et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation. Mov Disord. 2022;37(7):1405–15.
pubmed: 35460111
doi: 10.1002/mds.29025
Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H, Matsumoto T. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet. 2006;15(6):883–95.
pubmed: 16449237
doi: 10.1093/hmg/ddl006
Gegg ME, Cooper JM, Schapira AH, Taanman JW. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE. 2009;4(3):e4756.
pubmed: 19270741
pmcid: 2649444
doi: 10.1371/journal.pone.0004756
Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, Kit-Ho Lai R, Wai-Hin Yuen V, Wing-Sum Cheu J, Wai-Hung Ho D, et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 2019;10(12):934.
pubmed: 31819034
pmcid: 6901483
doi: 10.1038/s41419-019-2155-3
Moore TM, Cheng L, Wolf DM, Ngo J, Segawa M, Zhu X, Strumwasser AR, Cao Y, Clifford BL, Ma A, et al. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun. 2022;13(1):6661.
pubmed: 36333379
pmcid: 9636263
doi: 10.1038/s41467-022-34468-2
Chen CCW, Erlich AT, Hood DA. Role of parkin and endurance training on mitochondrial turnover in skeletal muscle. Skelet Muscle. 2018;8(1):10.
pubmed: 29549884
pmcid: 5857114
doi: 10.1186/s13395-018-0157-y
Leduc-Gaudet JP, Reynaud O, Hussain SN, Gouspillou G. Parkin overexpression protects from ageing-related loss of muscle mass and strength. J Physiol. 2019;597(7):1975–91.
pubmed: 30614532
pmcid: 6441909
doi: 10.1113/JP277157
Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110(21):8638–43.
pubmed: 23650379
pmcid: 3666724
doi: 10.1073/pnas.1216197110
Ivankovic D, Chau KY, Schapira AH, Gegg ME. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136(2):388–402.
pubmed: 26509433
doi: 10.1111/jnc.13412
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, et al. Mitophagy receptor FUNDC1 is regulated by PGC-1alpha/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep. 2021;22(3):e50629.
pubmed: 33554448
pmcid: 7926232
doi: 10.15252/embr.202050629
Li W, Yin L, Sun X, Wu J, Dong Z, Hu K, Sun A, Ge J. Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 2020;11(7):599.
pubmed: 32732978
pmcid: 7393127
doi: 10.1038/s41419-020-02805-2
Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1alpha during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol. 2015;308(9):C710–719.
pubmed: 25673772
pmcid: 4420796
doi: 10.1152/ajpcell.00380.2014
Riis S, Murray JB, O’Connor R. IGF-1 signalling regulates Mitochondria dynamics and turnover through a conserved GSK-3beta-Nrf2-BNIP3 pathway. Cells. 2020. https://doi.org/10.3390/cells9010147 .
doi: 10.3390/cells9010147
pubmed: 31936236
pmcid: 7016769
Lu Y, Fujioka H, Joshi D, Li Q, Sangwung P, Hsieh P, Zhu J, Torio J, Sweet D, Wang L, et al. Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge. Sci Rep. 2018;8(1):8251.
pubmed: 29844467
pmcid: 5974273
doi: 10.1038/s41598-018-26394-5
Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–51.
pubmed: 17108241
doi: 10.1152/advan.00052.2006
Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25(6):1080–93.
pubmed: 29540794
pmcid: 5988750
doi: 10.1038/s41418-018-0086-7
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 2013;17(5):719–30.
pubmed: 23602449
doi: 10.1016/j.cmet.2013.03.014
Choi JW, Jo A, Kim M, Park HS, Chung SS, Kang S, Park KS. BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice. Diabetologia. 2016;59(3):571–81.
pubmed: 26693709
doi: 10.1007/s00125-015-3836-9
Fujiwara M, Tian L, Le PT, DeMambro VE, Becker KA, Rosen CJ, Guntur AR. The mitophagy receptor bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem. 2019;294(34):12683–94.
pubmed: 31266807
pmcid: 6709636
doi: 10.1074/jbc.RA119.008630
Corona JC, Duchen MR. Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr. 2015;47(1–2):89–99.
pubmed: 25216534
doi: 10.1007/s10863-014-9576-6
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81.
pubmed: 31501588
doi: 10.1038/s41582-019-0244-7
Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–66.
pubmed: 28190529
pmcid: 5341618
doi: 10.1016/j.tins.2017.01.002
Markaki M, Tavernarakis N. Mitochondrial turnover and homeostasis in ageing and neurodegeneration. FEBS Lett. 2020;594(15):2370–9.
pubmed: 32350855
doi: 10.1002/1873-3468.13802
Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 2012;111(8):1012–26.
pubmed: 22904094
pmcid: 3518037
doi: 10.1161/CIRCRESAHA.112.274142
Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW. 2nd: parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science. 2015;350(6265):aad2459.
pubmed: 26785495
pmcid: 4747105
doi: 10.1126/science.aad2459
Guo S, Zhang S, Zhuang Y, Xie F, Wang R, Kong X, Zhang Q, Feng Y, Gao H, Kong X, et al. Muscle PARP1 inhibition extends lifespan through AMPKalpha PARylation and activation in Drosophila. Proc Natl Acad Sci U S A. 2023;120(13):e2213857120.
pubmed: 36947517
pmcid: 10068811
doi: 10.1073/pnas.2213857120
Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Avila M, de la Mata M, Pavon AD, de Lavera I, Alcocer-Gomez E, Galan F, et al. Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta. 2015;1852(11):2535–53.
pubmed: 26341273
doi: 10.1016/j.bbadis.2015.08.027
Daskalaki I, Tavernarakis N. Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev. 2020;191:111345.
pubmed: 32891602
doi: 10.1016/j.mad.2020.111345
Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine. 2017;21:7–13.
pubmed: 28330601
pmcid: 5514379
doi: 10.1016/j.ebiom.2017.03.020
Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF. Mitophagy in neurodegeneration and aging. Neurochem Int. 2017;109:202–9.
pubmed: 28235551
pmcid: 5565781
doi: 10.1016/j.neuint.2017.02.007
Cen X, Zhang M, Zhou M, Ye L, Xia H. Mitophagy regulates neurodegenerative diseases Cells. 2021. https://doi.org/10.3390/cells10081876 .
doi: 10.3390/cells10081876
pubmed: 34440645
Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet. 2012;3:297.
pubmed: 23267366
pmcid: 3525948
doi: 10.3389/fgene.2012.00297
Prasuhn J, Davis RL, Kumar KR. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front Cell Dev Biol. 2020;8:615461.
pubmed: 33469539
doi: 10.3389/fcell.2020.615461