MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal-organic frameworks utilizing graph convolutional networks.
Graph convolutional network (GCN)
Guest accessibility
MOFGalaxyNet
Machine learning
Materials properties
Metal–Organic Frameworks (MOF)
Social networking
Journal
Journal of cheminformatics
ISSN: 1758-2946
Titre abrégé: J Cheminform
Pays: England
ID NLM: 101516718
Informations de publication
Date de publication:
11 Oct 2023
11 Oct 2023
Historique:
received:
29
06
2023
accepted:
23
09
2023
medline:
12
10
2023
pubmed:
12
10
2023
entrez:
11
10
2023
Statut:
epublish
Résumé
Metal-organic frameworks (MOFs), are porous crystalline structures comprising of metal ions or clusters intricately linked with organic entities, displaying topological diversity and effortless chemical flexibility. These characteristics render them apt for multifarious applications such as adsorption, separation, sensing, and catalysis. Predominantly, the distinctive properties and prospective utility of MOFs are discerned post-manufacture or extrapolation from theoretically conceived models. For empirical researchers unfamiliar with hypothetical structure development, the meticulous crystal engineering of a high-performance MOF for a targeted application via a bottom-up approach resembles a gamble. For example, the precise pore limiting diameter (PLD), which determines the guest accessibility of any MOF cannot be easily inferred with mere knowledge of the metal ion and organic ligand. This limitation in bottom-up conceptual understanding of specific properties of the resultant MOF may contribute to the cautious industrial-scale adoption of MOFs.Consequently, in this study, we take a step towards circumventing this limitation by designing a new tool that predicts the guest accessibility-a MOF key performance indicator-of any given MOF from information on only the organic linkers and the metal ions. This new tool relies on clustering different MOFs in a galaxy-like social network, MOFGalaxyNet, combined with a Graphical Convolutional Network (GCN) to predict the guest accessibility of any new entry in the social network. The proposed network and GCN results provide a robust approach for screening MOFs for various host-guest interaction studies.
Identifiants
pubmed: 37821998
doi: 10.1186/s13321-023-00764-2
pii: 10.1186/s13321-023-00764-2
pmc: PMC10568891
doi:
Types de publication
Journal Article
Langues
eng
Pagination
94Subventions
Organisme : German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
ID : FAIRmat
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. Springer Nature Switzerland AG.
Références
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32134-32148
pubmed: 35818710
ACS Cent Sci. 2020 Nov 25;6(11):1890-1900
pubmed: 33274268
Prev Med. 2021 Apr;145:106440
pubmed: 33516759
Nanomaterials (Basel). 2022 Feb 20;12(4):
pubmed: 35215032
ACS Appl Mater Interfaces. 2021 Dec 29;13(51):61004-61014
pubmed: 34910455
Neurosci Biobehav Rev. 2021 Jul;126:289-303
pubmed: 33781834
J Cheminform. 2015 May 20;7:20
pubmed: 26052348
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9
pubmed: 27048719
Artif Intell Med. 2021 Sep;119:102138
pubmed: 34531007
J Chem Theory Comput. 2010 Nov 9;6(11):3472-80
pubmed: 26617098
Data Brief. 2021 Feb 19;35:106898
pubmed: 33718550
Environ Pollut. 2022 Aug 1;306:119324
pubmed: 35513193
J Cheminform. 2018 Feb 06;10(1):4
pubmed: 29411163
J Aging Health. 2022 Oct;34(6-8):831-843
pubmed: 35042381
J Comput Aided Mol Des. 2016 Aug;30(8):595-608
pubmed: 27558503
Angew Chem Int Ed Engl. 2022 May 2;61(19):e202200242
pubmed: 35104033
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6
pubmed: 12060727
BMC Genomics. 2020 Jan 2;21(1):6
pubmed: 31898477
Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202114573
pubmed: 34878706
ACS Omega. 2022 Apr 04;7(15):12978-12992
pubmed: 35474778