Progression-free survival, disease-free survival and other composite end points in oncology: improved reporting is needed.
Journal
Nature reviews. Clinical oncology
ISSN: 1759-4782
Titre abrégé: Nat Rev Clin Oncol
Pays: England
ID NLM: 101500077
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
accepted:
18
09
2023
medline:
20
11
2023
pubmed:
13
10
2023
entrez:
12
10
2023
Statut:
ppublish
Résumé
Composite outcome measures such as progression-free survival and disease-free survival are increasingly used as surrogate end points in oncology research, frequently serving as the primary end point of pivotal trials that form the basis for FDA and EMA approvals. Such outcome measures combine two or more distinct events (for example, tumour (re)growth, new lesions and/or death) into a single, time-to-event end point. The use of a composite end point can increase the statistical power of a clinical trial and decrease the follow-up period required to demonstrate efficacy, thus lowering costs; however, these end points have a number of limitations. Composite outcomes are often vaguely defined, with definitions that vary greatly between studies, complicating comparisons of results across trials. Altering the makeup of events included in a composite outcome can alter study conclusions, including whether treatment effects are statistically significant. Moreover, the events included in a composite outcome often vary in clinical significance, reflect distinct biological pathways and/or are affected differently by treatment. Therefore, knowing the precise breakdown of the component events is essential to accurately interpret trial results and gauge the true benefit of an intervention. In oncology clinical trials, however, such information is rarely provided. In this Perspective, we emphasize this deficiency through a review of 50 studies with progression-free survival as an outcome published in five top oncology journals, discuss the advantages and challenges of using composite end points, and highlight the need for transparent reporting of the component events.
Identifiants
pubmed: 37828154
doi: 10.1038/s41571-023-00823-5
pii: 10.1038/s41571-023-00823-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
885-895Informations de copyright
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Del Paggio, J. C. et al. Evolution of the randomized clinical trial in the era of precision oncology. JAMA Oncol. 7, 728–734 (2021).
pubmed: 33764385
doi: 10.1001/jamaoncol.2021.0379
Le-Rademacher, J. & Wang, X. Time-to-event data: an overview and analysis considerations. J. Thorac. Oncol. 16, 1067–1074 (2021).
pubmed: 33887465
doi: 10.1016/j.jtho.2021.04.004
McCoy, C. E. Understanding the use of composite endpoints in clinical trials. West J. Emerg. Med. 19, 631–634 (2018).
pubmed: 30013696
pmcid: 6040910
doi: 10.5811/westjem.2018.4.38383
Kim, C. & Prasad, V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US Food and Drug Administration approvals. JAMA Intern. Med. 175, 1992–1994 (2015).
pubmed: 26502403
doi: 10.1001/jamainternmed.2015.5868
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
pubmed: 19097774
doi: 10.1016/j.ejca.2008.10.026
Delgado, A. & Guddati, A. K. Clinical endpoints in oncology–a primer. Am. J. Cancer Res. 11, 1121–1131 (2021).
pubmed: 33948349
pmcid: 8085844
Robinson, A. G., Booth, C. M. & Eisenhauer, E. A. Disease-free survival as an end-point in the treatment of solid tumours – perspectives from clinical trials and clinical practice. Eur. J. Cancer 50, 2298–2302 (2014).
pubmed: 24930623
doi: 10.1016/j.ejca.2014.05.016
Cohen, R. et al. Guidelines for time-to-event end-point definitions in adjuvant randomised trials for patients with localised colon cancer: results of the DATECAN initiative. Eur. J. Cancer 130, 63–71 (2020).
pubmed: 32172199
pmcid: 7409551
doi: 10.1016/j.ejca.2020.02.009
Gourgou-Bourgade, S. et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann. Oncol. 26, 873–879 (2015).
pubmed: 25725046
doi: 10.1093/annonc/mdv106
Fleming, M. T., Morris, M. J., Heller, G. & Scher, H. I. Post-therapy changes in PSA as an outcome measure in prostate cancer clinical trials. Nat. Rev. Clin. Oncol. 3, 658–667 (2006).
doi: 10.1038/ncponc0664
Bubley, G. et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J. Clin. Oncol. 17, 3461–3467 (1999).
pubmed: 10550143
doi: 10.1200/JCO.1999.17.11.3461
Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl Cancer Inst. 92, 205–216 (2000).
pubmed: 10655437
doi: 10.1093/jnci/92.3.205
Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).
pubmed: 18309951
doi: 10.1200/JCO.2007.12.4487
Scher, H. I. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 34, 1402–1418 (2016).
pubmed: 26903579
pmcid: 4872347
doi: 10.1200/JCO.2015.64.2702
Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).
pubmed: 23228172
doi: 10.1056/NEJMoa1209096
Franzese, C. et al. The efficacy of stereotactic body radiation therapy and the impact of systemic treatments in oligometastatic patients from prostate cancer. Cancer Med. 7, 4379–4386 (2018).
pubmed: 30073758
pmcid: 6144154
doi: 10.1002/cam4.1707
Gafita, A. et al. Early prostate-specific antigen changes and clinical outcome after
pubmed: 32111687
doi: 10.2967/jnumed.119.240242
Fizazi, K. et al. Phase III, randomized, placebo-controlled study of docetaxel in combination with zibotentan in patients with metastatic castration-resistant prostate cancer. J. clin. oncol. 31, 1740–1747 (2013).
pubmed: 23569308
doi: 10.1200/JCO.2012.46.4149
Woo, S. et al. Correlation between imaging-based intermediate endpoints and overall survival in men with metastatic castration-resistant prostate cancer: analysis of 28 randomized trials using the Prostate Cancer Clinical Trials Working Group (PCWG2) criteria in 16,511 patients. Clin. Genitourin. Cancer 20, 69–79 (2022).
pubmed: 34903480
doi: 10.1016/j.clgc.2021.11.007
Shore, N. D. et al. Prostate-specific antigen (PSA) progression-free survival (PFS): a comparison of degarelix versus leuprolide in patients with prostate cancer [abstract]. J. Clin. Oncol. 29 (Suppl. 7), 12 (2011).
doi: 10.1200/jco.2011.29.7_suppl.12
Kato, H. et al. Consequences of an early PSA response to enzalutamide treatment for Japanese patients with metastatic castration-resistant prostate cancer. Anticancer Res. 36, 6141–6150 (2016).
pubmed: 27793943
doi: 10.21873/anticanres.11205
Zhao, J. et al. AKR1C3 expression in primary lesion rebiopsy at the time of metastatic castration-resistant prostate cancer is strongly associated with poor efficacy of abiraterone as a first-line therapy. Prostate 79, 1553–1562 (2019).
pubmed: 31294486
doi: 10.1002/pros.23875
Kim, W. et al. Sequential use of the androgen synthesis inhibitors ketoconazole and abiraterone acetate in castration-resistant prostate cancer and the predictive value of circulating androgens. Clin. Cancer Res. 20, 6269–6276 (2014).
pubmed: 25336698
pmcid: 4277885
doi: 10.1158/1078-0432.CCR-14-1595
Saad, F. et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 22, 1541–1559 (2021).
pubmed: 34600602
pmcid: 9377412
doi: 10.1016/S1470-2045(21)00402-2
Rao, A. et al. Impact of clinical versus radiographic progression on clinical outcomes in metastatic castration-resistant prostate cancer. ESMO Open 5, e000943 (2020).
pubmed: 33184097
pmcid: 7662417
doi: 10.1136/esmoopen-2020-000943
Choi, S. W. & Cheung, C. W. The case of the misleading composite – one outcome is better than two. Anaesthesia 71, 1101–1103 (2016).
pubmed: 27440444
doi: 10.1111/anae.13590
Freemantle, N., Calvert, M., Wood, J., Eastaugh, J. & Griffin, C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA 289, 2554–2559 (2003).
pubmed: 12759327
doi: 10.1001/jama.289.19.2554
Lei, N. et al. Docetaxel-based therapy with and without antiangiogenic agents as first-line chemotherapy for castration-resistant prostate cancer: a meta-analysis of nine randomized controlled trials. Mol. Clin. Oncol. 2, 1182–1188 (2014).
pubmed: 25279220
pmcid: 4179809
doi: 10.3892/mco.2014.404
Kelly, W. K. et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol. 30, 1534–1540 (2012).
pubmed: 22454414
pmcid: 3383121
doi: 10.1200/JCO.2011.39.4767
Quinn, D. I. et al. Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): a randomised phase 3 trial. Lancet Oncol. 14, 893–900 (2013).
doi: 10.1016/S1470-2045(13)70294-8
pubmed: 23871417
pmcid: 4277263
Pili, R. et al. Phase II study on the addition of ASA404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRMPC. Clin. Cancer Res. 16, 2906–2914 (2010).
pubmed: 20460477
doi: 10.1158/1078-0432.CCR-09-3026
Heidenreich, A. et al. A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human αν integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 24, 329–336 (2013).
pubmed: 23104724
doi: 10.1093/annonc/mds505
Younes, A. et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann. Oncol. 28, 1436–1447 (2017).
pubmed: 28379322
pmcid: 5834038
doi: 10.1093/annonc/mdx097
Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 32, 3059–3067 (2014).
pubmed: 25113753
pmcid: 4979083
doi: 10.1200/JCO.2013.54.8800
Kostakoglu, L. et al. Recil 2017 criteria demonstrated similar prognostic value and detected a comparable treatment difference between obinutuzumab- and rituximab-chemotherapy compared with Cheson 2007 and Lugano 2014 criteria in patients with previously untreated advanced-stage follicular lymphoma [abstract]. Blood 136 (Suppl. 1), 25–26 (2020).
doi: 10.1182/blood-2020-134784
Berzaczy, D. et al. RECIL versus Lugano for treatment response assessment in FDG-avid non-Hodgkin lymphomas: a head-to-head comparison in 54 patients. Cancers 12, 9 (2019).
pubmed: 31861433
pmcid: 7016710
doi: 10.3390/cancers12010009
Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 28, 1963–1972 (2010).
pubmed: 20231676
doi: 10.1200/JCO.2009.26.3541
Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).
pubmed: 17470865
doi: 10.1200/JCO.2006.07.3049
Lencioni, R. & Llovet, J. M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 52–60 (2010).
pubmed: 20175033
doi: 10.1055/s-0030-1247132
Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).
pubmed: 26065612
doi: 10.1016/S1470-2045(15)70057-4
Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).
pubmed: 19934295
doi: 10.1158/1078-0432.CCR-09-1624
Bohnsack, O., Hoos, A. & Ludajic, K. Adaptation of the immune related response criteria: irrecist [abstract 1070P]. Ann. Oncol. 25 (Suppl. 4), iv369 (2014).
doi: 10.1093/annonc/mdu342.23
Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).
pubmed: 28271869
pmcid: 5648544
doi: 10.1016/S1470-2045(17)30074-8
Tazdait, M. et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 88, 38–47 (2018).
pubmed: 29182990
doi: 10.1016/j.ejca.2017.10.017
Park, H. J. et al. Comparison of RECIST 1.1 and iRECIST in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers 13, 120 (2021).
pubmed: 33561078
pmcid: 7795764
doi: 10.3390/cancers13010120
Jaffe, C. C. Measures of response: RECIST, WHO, and new alternatives. J. Clin. Oncol. 24, 3245–3251 (2006).
pubmed: 16829648
doi: 10.1200/JCO.2006.06.5599
Brody, T. Clinical Trials 2nd edn, 331–376 (Academic, 2016).
Rao, A. V. et al. Age-specific differences in oncogenic pathway dysregulation in patients with acute myeloid leukemia. J. Clin. Oncol. 27, 5580–5586 (2009).
pubmed: 19858393
doi: 10.1200/JCO.2009.22.2547
Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).
pubmed: 19805687
pmcid: 2773475
doi: 10.1200/JCO.2008.21.2514
Cortes, J. E. et al. Results of dasatinib therapy in patients with early chronic-phase chronic myeloid leukemia. J. Clin. Oncol. 28, 398–404 (2010).
pubmed: 20008620
doi: 10.1200/JCO.2009.25.4920
Marcucci, G. et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 25, 3337–3343 (2007).
pubmed: 17577018
doi: 10.1200/JCO.2007.10.8720
Hughes, T. P. et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 116, 3758–3765 (2010).
pubmed: 20679528
pmcid: 3266053
doi: 10.1182/blood-2010-03-273979
Yin, J. et al. Evaluation of event-free survival as a robust end point in untreated acute myeloid leukemia (Alliance A151614). Blood Adv. 3, 1714–1721 (2019).
pubmed: 31171508
pmcid: 6560345
doi: 10.1182/bloodadvances.2018026112
Bellera, C. A. et al. Protocol of the Definition for the Assessment of Time-to-event Endpoints in CANcer trials (DATECAN) project: formal consensus method for the development of guidelines for standardised time-to-event endpoints’ definitions in cancer clinical trials. Eur. J. Cancer 49, 769–781 (2013).
pubmed: 23122780
doi: 10.1016/j.ejca.2012.09.035
Tyagi, P. & Chu, E. Adjuvant irinotecan regimens in combination with infusional 5-fluorouracil/leucovorin fail to improve outcomes in surgically resected colorectal cancer. Clin. Colorectal Cancer 5, 86–88 (2005).
pubmed: 16098248
doi: 10.1016/S1533-0028(11)70170-0
Tolaney, S. M. et al. Updated Standardized Definitions for Efficacy End Points (STEEP) in adjuvant breast cancer clinical trials: STEEP version 2.0. J. Clin. Oncol. 39, 2720–2731 (2021).
pubmed: 34003702
pmcid: 10166345
doi: 10.1200/JCO.20.03613
Hudis, C. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J. Clin. Oncol. 25, 2127–2132 (2007).
pubmed: 17513820
doi: 10.1200/JCO.2006.10.3523
Saad, E. D. & Katz, A. Progression-free survival and time to progression as primary end points in advanced breast cancer: often used, sometimes loosely defined. Ann. Oncol. 20, 460–464 (2009).
pubmed: 19095776
doi: 10.1093/annonc/mdn670
Prasad, V., Kim, C., Burotto, M. & Vandross, A. The strength of association between surrogate end points and survival in oncology: a systematic review of trial-level meta-analyses. JAMA Intern. Med. 175, 1389–1398 (2015).
pubmed: 26098871
doi: 10.1001/jamainternmed.2015.2829
Ajani, J. A. et al. Disease-free survival as a surrogate endpoint for overall survival in adults with resectable esophageal or gastroesophageal junction cancer: a correlation meta-analysis. Eur. J. Cancer 170, 119–130 (2022).
pubmed: 35605522
doi: 10.1016/j.ejca.2022.04.027
Google Scholar. Top publications: oncology. Google Scholar https://scholar.google.co.uk/citations?view_op=top_venues&hl=en&vq=med_oncology (2023).
Kip, K. E., Hollabaugh, K., Marroquin, O. C. & Williams, D. O. The problem with composite end points in cardiovascular studies: the story of major adverse cardiac events and percutaneous coronary intervention. J. Am. Coll. Cardiol. 51, 701–707 (2008).
pubmed: 18279733
doi: 10.1016/j.jacc.2007.10.034
Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).
pubmed: 30514977
doi: 10.1038/s41571-018-0134-8
Beaver, J. A., Kluetz, P. G. & Pazdur, R. Metastasis-free survival – a new end point in prostate cancer trials. N. Engl. J. Med. 378, 2458–2460 (2018).
pubmed: 29949489
doi: 10.1056/NEJMp1805966
Bellera, C. A. et al. Guidelines for time-to-event end point definitions in sarcomas and gastrointestinal stromal tumors (GIST) trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann. Oncol. 26, 865–872 (2015).
pubmed: 25070543
doi: 10.1093/annonc/mdu360
Amabile, S. et al. Clinical significance of Distant Metastasis-Free Survival (DMFS) in melanoma: a narrative review from adjuvant clinical trials. J. Clin. Med. 10, 5475 (2021).
pubmed: 34884176
pmcid: 8658595
doi: 10.3390/jcm10235475
Pan, H. et al. Comparison of survival outcomes among patients with breast cancer with distant vs ipsilateral supraclavicular lymph node metastases. JAMA Netw. Open 4, e211809 (2021).
pubmed: 33724394
pmcid: 7967083
doi: 10.1001/jamanetworkopen.2021.1809
Zhan, H., Zhao, X., Lu, Z., Yao, Y. & Zhang, X. Correlation and survival analysis of distant metastasis site and prognosis in patients with hepatocellular carcinoma. Front. Oncol. 11, 652768 (2021).
pubmed: 34041022
pmcid: 8141638
doi: 10.3389/fonc.2021.652768
Twelves, C. et al. “New” metastases are associated with a poorer prognosis than growth of pre-existing metastases in patients with metastatic breast cancer treated with chemotherapy. Breast Cancer Res. 17, 150 (2015).
pubmed: 27391598
pmcid: 4674925
doi: 10.1186/s13058-015-0657-1
Mori, R. et al. The mode of progressive disease affects the prognosis of patients with metastatic breast cancer. World J. Surg. Oncol. 16, 169 (2018).
pubmed: 30107807
pmcid: 6092765
doi: 10.1186/s12957-018-1472-9
Suzuki, C. et al. The initial change in tumor size predicts response and survival in patients with metastatic colorectal cancer treated with combination chemotherapy. Ann. Oncol. 23, 948–954 (2012).
pubmed: 21832285
doi: 10.1093/annonc/mdr350
Stein, A. et al. Survival prediction in everolimus-treated patients with metastatic renal cell carcinoma incorporating tumor burden response in the RECORD-1 trial. Eur. Urol. 64, 994–1002 (2013).
pubmed: 23219086
doi: 10.1016/j.eururo.2012.11.032
Haslam, A., Hey, S. P., Gill, J. & Prasad, V. A systematic review of trial-level meta-analyses measuring the strength of association between surrogate end-points and overall survival in oncology. Eur. J. Cancer 106, 196–211 (2019).
pubmed: 30528804
doi: 10.1016/j.ejca.2018.11.012
Walsh, E. M., Nunes, R., Wilkinson, M. J. & Santa-Maria, C. A. Extended endocrine therapy for early-stage breast cancer: how do we decide? Curr. Oncol. Rep. 22, 123 (2020).
pubmed: 33015752
doi: 10.1007/s11912-020-00988-7
Algorashi, I., Goldvaser, H., Ribnikar, D., Cescon, D. W. & Amir, E. Evolution in sites of recurrence over time in breast cancer patients treated with adjuvant endocrine therapy. Cancer Treat. Rev. 70, 138–143 (2018).
pubmed: 30176513
doi: 10.1016/j.ctrv.2018.08.009
Wilson, B. E., Desnoyers, A., Al-Showbaki, L., Nadler, M. B. & Amir, E. A retrospective analysis of changes in distant and breast cancer related disease-free survival events in adjuvant breast cancer trials over time. Sci. Rep. 12, 6352 (2022).
pubmed: 35428842
pmcid: 9012825
doi: 10.1038/s41598-022-09949-5
Robinson, A. G. et al. Patient perspectives of value of delayed disease progression on imaging (imaging PFS). A treatment trade-off experiment. J. Cancer Policy 30, 100301 (2021).
pubmed: 35559797
doi: 10.1016/j.jcpo.2021.100301
Brundage, M. D. et al. Patients’ attitudes and preferences toward delayed disease progression in the absence of improved survival. J. Natl Cancer Inst., https://doi.org/10.1093/jnci/djad138 (2023).
doi: 10.1093/jnci/djad138
pubmed: 37458509
Cordoba, G., Schwartz, L., Woloshin, S., Bae, H. & Gøtzsche, P. C. Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review. BMJ 341, c3920 (2010).
pubmed: 20719825
pmcid: 2923692
doi: 10.1136/bmj.c3920
European Medicines Agency. Appendix 1 to the guideline on the evaluation of anticancer medicinal products in man. European Medicines Agency https://www.ema.europa.eu/en/documents/scientific-guideline/appendix-1-guideline-evaluation-anticancer-medicinal-products-man-methodological-consideration-using_en.pdf (2012).
European Network for Health Technology Assessment. Personalised medicine and co-dependent technologies, with a special focus on issues of study design. EUNETHTA https://www.eunethta.eu/wp-content/uploads/2018/03/Personalized_Medicine_2016-03-07_reflection_paper_pm_2nd_draft.pdf (2015).
Sopik, V. & Narod, S. A. The relationship between tumour size, nodal status and distant metastases: on the origins of breast cancer. Breast Cancer Res. Treat. 170, 647–656 (2018).
pubmed: 29693227
pmcid: 6022519
doi: 10.1007/s10549-018-4796-9
Gray, J. W. Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell 4, 4–6 (2003).
pubmed: 12892707
doi: 10.1016/S1535-6108(03)00167-3
Bryce, A. H. et al. Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: post hoc analysis of PREVAIL. Prostate Cancer Prostatic Dis. 20, 221–227 (2017).
pubmed: 28117385
pmcid: 5435962
doi: 10.1038/pcan.2016.71
Merino, M. et al. Irreconcilable differences: the divorce between response rates, progression-free survival, and overall survival. J. Clin. Oncol. 41, 2706–2712 (2023).
pubmed: 36930853
doi: 10.1200/JCO.23.00225
Kumar, S. K. et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 21, 1630–1642 (2020).
pubmed: 33129376
doi: 10.1016/S1470-2045(20)30525-8
D’Alterio, C., Scala, S., Sozzi, G., Roz, L. & Bertolini, G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol. 60, 351–361 (2020).
pubmed: 31454672
doi: 10.1016/j.semcancer.2019.08.019
Kim, H. T., Logan, B. & Weisdorf, D. J. Novel composite endpoints after allogeneic hematopoietic cell transplantation. Transplant. Cell. Ther. 27, 650–657 (2021).
pubmed: 34004355
pmcid: 8489461
doi: 10.1016/j.jtct.2021.05.005
Soiffer, R. J. & Chen, Y.-B. Pharmacologic agents to prevent and treat relapse after allogeneic hematopoietic cell transplantation. Blood Adv. 1, 2473–2482 (2017).
pubmed: 29296897
pmcid: 5729623
doi: 10.1182/bloodadvances.2017009894
Oulhaj, A., El Ghouch, A. & Holman, R. R. Testing for qualitative heterogeneity: an application to composite endpoints in survival analysis. Stat. Methods Med. Res. 28, 151–169 (2019).
pubmed: 28670972
doi: 10.1177/0962280217717761
Carroll, K. J. Analysis of progression-free survival in oncology trials: some common statistical issues. Pharm. Stat. 6, 99–113 (2007).
pubmed: 17243095
doi: 10.1002/pst.251
Herbst, R. S. et al. Adjuvant osimertinib for resected EGFR-mutated stage IB-IIIA non-small-cell lung cancer: updated results from the phase III randomized ADAURA trial. J. Clin. Oncol. 41, 1830–1840 (2023).
pubmed: 36720083
pmcid: 10082285
doi: 10.1200/JCO.22.02186
Chen, E. Y., Joshi, S. K., Tran, A. & Prasad, V. Estimation of study time reduction using surrogate end points rather than overall survival in oncology clinical trials. JAMA Intern. Med. 179, 642 (2019).
pubmed: 30933235
pmcid: 6503556
doi: 10.1001/jamainternmed.2018.8351
Marsal, J.-R. et al. The use of a binary composite endpoint and sample size requirement: influence of endpoints overlap. Am. J. Epidemiol. 185, 832–841 (2017).
pubmed: 28402501
doi: 10.1093/aje/kww105
Cameron, L. Multiple Endpoints in Randomized Controlled Trials: a Review and an Illustration of the Global Test. Thesis, Western (2023).
Faber, J. & Fonseca, L. M. How sample size influences research outcomes. Dent. Press J. Orthod. 19, 27–29 (2014).
doi: 10.1590/2176-9451.19.4.027-029.ebo
Bonnetain, F. et al. Guidelines for time-to-event end-point definitions in trials for pancreatic cancer. Results of the DATECAN initiative (Definition for the Assessment of Time-to-event End-points in CANcer trials). Eur. J. Cancer 50, 2983–2993 (2014).
pubmed: 25256896
doi: 10.1016/j.ejca.2014.07.011
Kramar, A. et al. Guidelines for the definition of time-to-event end points in renal cell cancer clinical trials: results of the DATECAN project. Ann. Oncol. 26, 2392–2398 (2015).
pubmed: 26371288
doi: 10.1093/annonc/mdv380
Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).
pubmed: 27718847
doi: 10.1056/NEJMoa1606774
Kantoff, P. W. et al. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study [abstract]. J. Clin. Oncol. 17 (8), 2506 (1999).
pubmed: 10561316
doi: 10.1200/JCO.1999.17.8.2506
Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).
pubmed: 24881730
pmcid: 4418931
doi: 10.1056/NEJMoa1405095
Durie, B. G. M. et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389, 519–527 (2017).
pubmed: 28017406
doi: 10.1016/S0140-6736(16)31594-X
O’Brien, M. et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB–IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): an interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 23, 1274–1286 (2022).
pubmed: 36108662
doi: 10.1016/S1470-2045(22)00518-6
Van Cutsem, E. et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J. Clin. Oncol. 27, 3117–3125 (2009).
pubmed: 19451425
doi: 10.1200/JCO.2008.21.6663
Martin, M. et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1688–1700 (2017).
pubmed: 29146401
doi: 10.1016/S1470-2045(17)30717-9
Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017).
pubmed: 28644114
pmcid: 5754190
doi: 10.1056/NEJMoa1614359
Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).
pubmed: 35403841
pmcid: 9844511
doi: 10.1056/NEJMoa2202170
Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).
pubmed: 34097852
doi: 10.1016/S0140-6736(21)01222-8
Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399, 1718–1729 (2022).
pubmed: 35367007
doi: 10.1016/S0140-6736(22)00562-1