Boosting Copper Biocidal Activity by Silver Decoration and Few-Layer Graphene in Coatings on Textile Fibers.
antibacterial
antiviral
copper micro flakes
few‐layer graphene
pathogen‐repelling coating
Journal
Global challenges (Hoboken, NJ)
ISSN: 2056-6646
Titre abrégé: Glob Chall
Pays: Germany
ID NLM: 101705641
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
09
06
2023
revised:
26
08
2023
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
epublish
Résumé
The outbreak of the Coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing antiviral surface coatings that are capable of repelling pathogens and neutralizing them through self-sanitizing properties. In this study, a novel coating design based on few-layer graphene (FLG) is proposed and silver-decorated micro copper flakes (CuMF) that exhibit both antibacterial and antiviral properties. The role of sacrificial anode surfaces and intrinsic graphene defects in enhancing the release of metal ions from CuMF embedded in water-based binders is investigated. In silico analysis is conducted to better understand the molecular interactions of pathogen-repelling species with bacterial or bacteriophage proteins. The results show that the optimal amount of CuMF/FLG in the coating leads to a significant reduction in bacterial growth, with reductions of 3.17 and 9.81 log for
Identifiants
pubmed: 37829680
doi: 10.1002/gch2.202300113
pii: GCH21542
pmc: PMC10566802
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2300113Informations de copyright
© 2023 The Authors. Global Challenges published by Wiley‐VCH GmbH.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Diagn Microbiol Infect Dis. 2020 Dec;98(4):115176
pubmed: 33069048
J Appl Microbiol. 2018 May;124(5):1032-1046
pubmed: 29280540
J Hazard Mater. 2016 Jul 15;312:1-7
pubmed: 27015373
Sci Rep. 2015 Nov 05;5:16246
pubmed: 26538366
ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28990-29001
pubmed: 28767226
ACS Nano. 2020 Apr 28;14(4):3747-3754
pubmed: 32267678
Trends Plant Sci. 2017 Jan;22(1):11-19
pubmed: 27666517
Sci Rep. 2022 May 3;12(1):7193
pubmed: 35505071
Molecules. 2020 Dec 09;25(24):
pubmed: 33316935
J Inorg Biochem. 2014 Apr;133:24-32
pubmed: 24441110
Environ Sci Technol. 2002 Oct 1;36(19):4017-24
pubmed: 12380069
J Mater Chem B. 2022 Jul 20;10(28):5323-5343
pubmed: 35775993
J Colloid Interface Sci. 2017 Nov 1;505:341-351
pubmed: 28601743
Med Hypotheses. 2020 Nov;144:110253
pubmed: 33254558
J Virol. 2005 Apr;79(8):5017-26
pubmed: 15795287
Colloids Surf B Biointerfaces. 2019 Sep 1;181:6-15
pubmed: 31103799
Langmuir. 2018 Sep 18;34(37):11156-11166
pubmed: 30145895
ACS Appl Bio Mater. 2019 May 20;2(5):1842-1849
pubmed: 35030674
J Photochem Photobiol B. 2018 Nov;188:126-134
pubmed: 30267962
Appl Environ Microbiol. 2011 Feb;77(3):794-802
pubmed: 21148701
Chem Sci. 2020 Jun 16;11(26):6606-6622
pubmed: 33033592
Spectrochim Acta A Mol Biomol Spectrosc. 2006 May 15;64(2):448-53
pubmed: 16434228
Front Microbiol. 2017 Dec 05;8:2433
pubmed: 29259603
Prev Med. 2020 Oct;139:106236
pubmed: 32795645
Appl Environ Microbiol. 2018 May 31;84(12):
pubmed: 29625986
Med Hypotheses. 2020 Nov;144:110031
pubmed: 33254479
J Biosci Bioeng. 2012 May;113(5):580-6
pubmed: 22227118
Nano Today. 2020 Aug;33:100883
pubmed: 32382315
ACS Nano. 2013 Aug 27;7(8):6939-47
pubmed: 23883292
ACS Appl Bio Mater. 2019 Dec 16;2(12):5687-5696
pubmed: 35021562
ACS Appl Mater Interfaces. 2016 Oct 19;8(41):27498-27510
pubmed: 27680975
Nat Commun. 2017 Nov 16;8(1):1549
pubmed: 29147017
Chem. 2020 Sep 10;6(9):2135-2146
pubmed: 32838053