Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores.
bacterial spore
electrochemical potential
spore germination
spore memory
Journal
mBio
ISSN: 2150-7511
Titre abrégé: mBio
Pays: United States
ID NLM: 101519231
Informations de publication
Date de publication:
13 Oct 2023
13 Oct 2023
Historique:
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
aheadofprint
Résumé
Bacterial spores are metabolically dormant, resistant to microbicides, and vectors of food spoilage and diseases, while germinated spores are easy to kill. Consequently, understanding germination mechanisms may facilitate the development of "germinate-to-eradicate" strategies. Spores germinate in response to many compounds (called germinants). They can also retain the memory of a germinant exposure, such that a second exposure triggers more efficient germination, but how is not clear. A recent high-profile paper [Science (2022) 378:43] suggested that increasing spore electrochemical potential is how memory is "stored" based on measurements of
Identifiants
pubmed: 37830807
doi: 10.1128/mbio.02220-23
pmc: PMC10653816
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0222023Références
Genes Dev. 2022 May 1;36(9-10):634-646
pubmed: 35654455
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9552-9557
pubmed: 31000597
J Appl Microbiol. 2018 Jan;124(1):2-14
pubmed: 28980459
FEMS Microbes. 2020 Sep 23;1(1):xtaa001
pubmed: 37333958
mBio. 2015 Nov 24;6(6):e01859-15
pubmed: 26604257
J Bacteriol. 2015 Jul;197(14):2361-73
pubmed: 25939833
Microbiol Spectr. 2016 Apr;4(2):
pubmed: 27227299
J Appl Microbiol. 2010 Feb;108(2):582-90
pubmed: 19674187
Trends Microbiol. 2020 Apr;28(4):304-314
pubmed: 31952908
Biochem J. 1978 Aug 15;174(2):635-40
pubmed: 101213
Nat Protoc. 2011 May;6(5):625-39
pubmed: 21527920
Biochim Biophys Acta. 2010 Jul;1804(7):1405-12
pubmed: 20399286
J Bacteriol. 2014 Jul;196(13):2443-54
pubmed: 24769693
J Bacteriol. 1981 Oct;148(1):20-9
pubmed: 6793553
Nature. 2015 Nov 5;527(7576):59-63
pubmed: 26503040
J Bacteriol. 2001 Aug;183(16):4886-93
pubmed: 11466292
Anal Chem. 2010 Oct 15;82(20):8717-24
pubmed: 20873796
Appl Environ Microbiol. 2014 Jan;80(1):345-53
pubmed: 24162576
J Chem Biol. 2010 Mar;3(1):1-18
pubmed: 19693614
Curr Opin Microbiol. 2022 Feb;65:101-107
pubmed: 34808546
Crit Rev Food Sci Nutr. 2023 Jul 28;:1-15
pubmed: 37504494
Biochem J. 1978 Aug 15;174(2):627-34
pubmed: 101212
Annu Rev Microbiol. 2017 Sep 8;71:459-477
pubmed: 28697670
J Bacteriol. 2000 Oct;182(19):5505-12
pubmed: 10986255
Cell Syst. 2017 Mar 22;4(3):291-305.e7
pubmed: 28189581
Trends Microbiol. 2014 Jul;22(7):406-16
pubmed: 24814671
J Appl Microbiol. 2009 Mar;106(3):814-24
pubmed: 19187156
J Bacteriol. 2008 Oct;190(20):6741-8
pubmed: 18723620
J Appl Microbiol. 2003;95(3):637-48
pubmed: 12911713
Front Microbiol. 2023 Apr 11;14:1161604
pubmed: 37113233
Cell Syst. 2020 May 20;10(5):417-423.e3
pubmed: 32343961
J Appl Microbiol. 2019 Feb;126(2):348-358
pubmed: 30106202
J Appl Microbiol. 2020 Dec;129(6):1511-1522
pubmed: 32492264
J Biol Chem. 1970 Jul 25;245(14):3637-44
pubmed: 4394282
J Bacteriol. 2009 Mar;191(6):1787-97
pubmed: 19136594
Science. 2023 Apr 28;380(6643):387-391
pubmed: 37104613
Science. 2022 Oct 7;378(6615):43-49
pubmed: 36201591