Fast Quasi-Centroid Molecular Dynamics for Water and Ice.


Journal

The journal of physical chemistry. B
ISSN: 1520-5207
Titre abrégé: J Phys Chem B
Pays: United States
ID NLM: 101157530

Informations de publication

Date de publication:
26 Oct 2023
Historique:
medline: 13 10 2023
pubmed: 13 10 2023
entrez: 13 10 2023
Statut: ppublish

Résumé

We describe how the fast quasi-centroid molecular dynamics (f-QCMD) method can be applied to condensed-phase systems by approximating the quasi-centroid potential of mean force as a sum of inter- and intramolecular corrections to the classical interaction potential. The corrections are found by using a regularized iterative Boltzmann inversion procedure to recover the inter- and intramolecular quasi-centroid distribution functions obtained from a path integral molecular dynamics simulation. The resulting methodology is found to give good agreement with a previously published QCMD dipole absorption spectrum for liquid water and satisfactory agreement for ice. It also gives good agreement with spectra from a recent implementation of CMD that uses a precomputed elevated temperature potential of mean force. Modern centroid molecular dynamics methods, therefore, appear to be reaching a consensus regarding the impact of nuclear quantum effects on the vibrational spectra of water and ice.

Identifiants

pubmed: 37830934
doi: 10.1021/acs.jpcb.3c05028
pmc: PMC10614180
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9172-9180

Références

J Chem Phys. 2023 Jun 21;158(23):
pubmed: 37326163
J Chem Phys. 2009 Jul 14;131(2):024501
pubmed: 19603998
Faraday Discuss. 2019 Dec 16;221(0):350-366
pubmed: 31560351
Faraday Discuss. 2019 Dec 16;221(0):526-546
pubmed: 31544185
J Chem Phys. 2021 May 21;154(19):191101
pubmed: 34240909
J Chem Phys. 2022 Nov 14;157(18):181102
pubmed: 36379765
Phys Rev A Gen Phys. 1986 Dec;34(6):5080-5084
pubmed: 9897894
J Chem Phys. 2021 Nov 7;155(17):174120
pubmed: 34742190
J Phys Chem B. 2009 Oct 1;113(39):13118-30
pubmed: 19722542
J Chem Phys. 2022 Nov 7;157(17):174108
pubmed: 36347682
J Chem Phys. 2021 Dec 21;155(23):231101
pubmed: 34937347
J Chem Phys. 2010 Jan 7;132(1):014105
pubmed: 20078147
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):3730-3737
pubmed: 9963851
Phys Rev Lett. 2002 Apr 29;88(17):178901; author reply 178902
pubmed: 12005789
J Chem Phys. 2014 Nov 14;141(18):181101
pubmed: 25399122
J Chem Phys. 2021 Sep 14;155(10):104108
pubmed: 34525824
J Chem Phys. 2009 May 21;130(19):194510
pubmed: 19466846
J Chem Phys. 2014 Jun 21;140(23):234116
pubmed: 24952532
J Comput Chem. 2003 Oct;24(13):1624-36
pubmed: 12926006
J Chem Phys. 2021 Sep 14;155(10):104107
pubmed: 34525826
J Chem Phys. 2021 May 7;154(17):174104
pubmed: 34241048
J Chem Phys. 2010 Jan 21;132(3):031101
pubmed: 20095719
J Chem Phys. 2005 Feb 1;122(5):54105
pubmed: 15740308
J Phys Chem Lett. 2021 Sep 2;12(34):8285-8291
pubmed: 34427440
J Chem Phys. 2015 Apr 7;142(13):134103
pubmed: 25854224
Faraday Discuss. 2023 Oct 6;:
pubmed: 37799072
J Chem Phys. 2020 Oct 21;153(15):150902
pubmed: 33092383

Auteurs

Joseph E Lawrence (JE)

Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland.

Annina Z Lieberherr (AZ)

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

Theo Fletcher (T)

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

David E Manolopoulos (DE)

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

Classifications MeSH