Unleashing the power of solar light: WO

BiVO4/WO3 Degradation, Photoelectrocatalytic Sunlight Tetracycline

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 07 08 2023
accepted: 30 09 2023
medline: 15 11 2023
pubmed: 13 10 2023
entrez: 13 10 2023
Statut: ppublish

Résumé

The coupling of different oxide materials in a nanohybrid enables the customization of their optical and charge transport properties, leading to improved interfacial charge segregation and migration. In this study, BiVO

Identifiants

pubmed: 37831241
doi: 10.1007/s11356-023-30257-6
pii: 10.1007/s11356-023-30257-6
doi:

Substances chimiques

Water 059QF0KO0R
Tetracycline F8VB5M810T
Anti-Bacterial Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

112290-112306

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adamopoulos PM, Papagiannis I, Raptis D, Lianos P (2019) Photoelectrocatalytic hydrogen production using a TiO2/WO3 bilayer photocatalyst in the presence of ethanol as a fuel. Catalysts 9:1–12. https://doi.org/10.3390/catal9120976
doi: 10.3390/catal9120976
Chong W-K, Ng B-J, Kong XY et al (2023) Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation. Appl Catal B Environ 325:122372. https://doi.org/10.1016/j.apcatb.2023.122372
doi: 10.1016/j.apcatb.2023.122372
Clament Sagaya Selvam N, Kim YG, Kim DJ et al (2018) Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants. Sci Total Environ 635:741–749. https://doi.org/10.1016/j.scitotenv.2018.04.169
doi: 10.1016/j.scitotenv.2018.04.169
Dong P, Hou G, Xi X et al (2017) WO 3 -based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539–557. https://doi.org/10.1039/C6EN00478D
doi: 10.1039/C6EN00478D
Farooq U, Chaudhary P, Ingole PP et al (2020) Development of cuboidal KNbO 3 @α-Fe 2 O 3 hybrid nanostructures for improved photocatalytic and photoelectrocatalytic applications. ACS Omega 5:20491–20505. https://doi.org/10.1021/acsomega.0c02646
doi: 10.1021/acsomega.0c02646
Ghasemipour P, Fattahi M, Rasekh B, Yazdian F (2020) Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Sci Rep 10:4414. https://doi.org/10.1038/s41598-020-61367-7
doi: 10.1038/s41598-020-61367-7
Ghattavi S, Nezamzadeh-Ejhieh A (2020) A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos Part B Eng 183:107712. https://doi.org/10.1016/j.compositesb.2019.107712
doi: 10.1016/j.compositesb.2019.107712
Guo F, Li M, Ren H et al (2019a) Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation. Appl Surf Sci 491:88–94. https://doi.org/10.1016/j.apsusc.2019.06.158
doi: 10.1016/j.apsusc.2019.06.158
Guo M, Xing Z, Zhao T et al (2019b) WS2 quantum dots/MoS2@WO3-x core-shell hierarchical dual Z-scheme tandem heterojunctions with wide-spectrum response and enhanced photocatalytic performance. Appl Catal B Environ 257:117913. https://doi.org/10.1016/j.apcatb.2019.117913
doi: 10.1016/j.apcatb.2019.117913
Hou X, Jiang T, Xu X et al (2022) Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Jiegou Huaxue 41:2207074–2207080. https://doi.org/10.14102/j.cnki.0254-5861.2022-0145
doi: 10.14102/j.cnki.0254-5861.2022-0145
Jia H, Yao N, Zhu J et al (2022) Ni3N modified MOF heterostructure with tailored electronic structure for efficient overall water splitting. Jiegou Huaxue 41:2208031–2208036. https://doi.org/10.14102/j.cnki.0254-5861.2022-0112
doi: 10.14102/j.cnki.0254-5861.2022-0112
Jinhai L, Han M, Guo Y et al (2016) Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal. Appl Catal A Gen. 524:105–114. https://doi.org/10.1016/j.apcata.2016.06.025
doi: 10.1016/j.apcata.2016.06.025
Kang N, Xu D, Shi W (2019) Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC). Chinese J Chem Eng. 27:3053–3059. https://doi.org/10.1016/j.cjche.2019.05.008
doi: 10.1016/j.cjche.2019.05.008
Khanh Huyen NT, Pham TD, Dieu Cam NT et al (2021) Fabrication of titanium doped BiVO4 as a novel visible light driven photocatalyst for degradation of residual tetracycline pollutant. Ceram Int. 47:34253–34259. https://doi.org/10.1016/j.ceramint.2021.08.335
doi: 10.1016/j.ceramint.2021.08.335
Kumaravel S, Thiripuranthagan S, Vembuli T et al (2021) Fabrication of mesoporous WO3-SBA-15 catalysts and enhanced photocatalytic degradation of harmful dyes. Optik (Stuttg) 235:166599. https://doi.org/10.1016/j.ijleo.2021.166599
doi: 10.1016/j.ijleo.2021.166599
Lai C, Zhang M, Li B et al (2019) Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem Eng J 358:891–902. https://doi.org/10.1016/j.cej.2018.10.072
doi: 10.1016/j.cej.2018.10.072
Li F, Leung DYC (2020) Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation. Chem Eng Sci 211:115266. https://doi.org/10.1016/j.ces.2019.115266
doi: 10.1016/j.ces.2019.115266
Li F, Zhao W, Leung DYC (2019) Enhanced photoelectrocatalytic hydrogen production via Bi/BiVO4 photoanode under visible light irradiation. Appl Catal B Environ 258:117954. https://doi.org/10.1016/j.apcatb.2019.117954
doi: 10.1016/j.apcatb.2019.117954
Li J, Ma Y, Xu Y et al (2021) Enhanced photocatalytic degradation activity of Z-scheme heterojunction BiVO4/Cu/g-C3N4 under visible light irradiation. Water Environ Res 93:2010–2024. https://doi.org/10.1002/wer.1572
doi: 10.1002/wer.1572
Liaqat M, Khalid NR, Tahir MB et al (2023) Visible light induced photocatalytic activity of MnO2/BiVO4 for the degradation of organic dye and tetracycline. Ceram Int 49:10455–10461. https://doi.org/10.1016/j.ceramint.2022.11.229
doi: 10.1016/j.ceramint.2022.11.229
Liu MR, Hong QL, Li QH et al (2018) Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv Funct Mater 28:1801136. https://doi.org/10.1002/adfm.201801136
doi: 10.1002/adfm.201801136
Liu Q, Hu C, Wang X (2019) Hydrothermal synthesis of oxygen-deficiency tungsten oxide quantum dots with excellent photochromic reversibility. Appl Surf Sci 480:404–409. https://doi.org/10.1016/j.apsusc.2019.02.097
doi: 10.1016/j.apsusc.2019.02.097
Luo J, Li R, Chen Y et al (2019) Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep Purif Technol 210:417–430. https://doi.org/10.1016/j.seppur.2018.08.028
doi: 10.1016/j.seppur.2018.08.028
Madhusudan P, Kumar MV, Ishigaki T et al (2013) Hydrothermal synthesis of meso/macroporous BiVO4 hierarchical particles and their photocatalytic degradation properties under visible light irradiation. Environ Sci Pollut Res 20:6638–6645. https://doi.org/10.1007/s11356-013-1694-x
doi: 10.1007/s11356-013-1694-x
Mahdavi K, Zinatloo-Ajabshir S, Yousif QA, Salavati-Niasari M (2022) Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrason Sonochem 82:105892. https://doi.org/10.1016/j.ultsonch.2021.105892
doi: 10.1016/j.ultsonch.2021.105892
Mengting Z, Kurniawan TA, Yanping Y et al (2020) Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite for photodegradation of tetracycline in aqueous solutions. J Environ Manage 270:110839. https://doi.org/10.1016/j.jenvman.2020.110839
doi: 10.1016/j.jenvman.2020.110839
Mitra M, Ghosh A, Mondal A et al (2017) Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants. Appl Surf Sci 402:418–438. https://doi.org/10.1016/j.apsusc.2017.01.072
doi: 10.1016/j.apsusc.2017.01.072
Moosavi S, Li RYM, Lai CW et al (2020) Methylene blue dye photocatalytic degradation over synthesised Fe3O4/AC/TiO2 nano-catalyst: degradation and reusability studies. Nanomaterials 10:2360. https://doi.org/10.3390/nano10122360
doi: 10.3390/nano10122360
Murugan C, Abinav Nataraj R, Praveen Kumar M et al (2019) Enhanced charge transfer process of bismuth vanadate interleaved graphitic carbon nitride nanohybrids in mediator-free direct Z scheme photoelectrocatalytic water splitting. ChemistrySelect 4:4653–4663. https://doi.org/10.1002/slct.201900732
doi: 10.1002/slct.201900732
Nandi P, Das D (2020) ZnO-CuxO heterostructure photocatalyst for efficient dye degradation. J Phys Chem Solids. 143:109463. https://doi.org/10.1016/j.jpcs.2020.109463
doi: 10.1016/j.jpcs.2020.109463
Omrani N, Nezamzadeh-Ejhieh A (2020a) A comprehensive study on the mechanism pathways and scavenging agents in the photocatalytic activity of BiVO4/WO3 nano-composite. J Water Process Eng 33:101094. https://doi.org/10.1016/j.jwpe.2019.101094
doi: 10.1016/j.jwpe.2019.101094
Omrani N, Nezamzadeh-Ejhieh A (2020b) BiVO4/WO3 nano-composite: characterization and designing the experiments in photodegradation of sulfasalazine. Environ Sci Pollut Res 27:44292–44305. https://doi.org/10.1007/s11356-020-10278-1
doi: 10.1007/s11356-020-10278-1
Onkani SP, Diagboya PN, Mtunzi FM et al (2020) Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J Environ Manage 260:110145. https://doi.org/10.1016/j.jenvman.2020.110145
doi: 10.1016/j.jenvman.2020.110145
Reddy CV, Nagar A, Shetti NP et al (2023) Novel g-C3N4/BiVO4 heterostructured nanohybrids for high efficiency photocatalytic degradation of toxic chemical pollutants. Chemosphere 322:138146. https://doi.org/10.1016/j.chemosphere.2023.138146
doi: 10.1016/j.chemosphere.2023.138146
Samsudin MFR, Ullah H, Tahir AA et al (2021) Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. J Colloid Interface Sci. 586:785–796. https://doi.org/10.1016/j.jcis.2020.11.003
doi: 10.1016/j.jcis.2020.11.003
Selvarajan S, Suganthi A, Rajarajan M, Arunprasath K (2017) Highly efficient BiVO4/WO3 nanocomposite towards superior photocatalytic performance. Powder Technol 303:207–212. https://doi.org/10.1016/j.powtec.2016.10.069
doi: 10.1016/j.powtec.2016.10.069
Shahzad K, Tahir MB, Sagir M, Kabli MR (2019) Role of CuCo2S4 in Z-scheme MoSe2/BiVO4 composite for efficient photocatalytic reduction of heavy metals. Ceram Int. 45:23225–23232. https://doi.org/10.1016/j.ceramint.2019.08.018
doi: 10.1016/j.ceramint.2019.08.018
Sharma S, Basu S (2021a) Fabrication of centimeter-sized Sb2S3/SiO2 monolithic mimosa pudica nanoflowers for remediation of hazardous pollutants from industrial wastewater. J Clean Prod 280:124525. https://doi.org/10.1016/j.jclepro.2020.124525
doi: 10.1016/j.jclepro.2020.124525
Sharma S, Basu S (2021b) Visible-light-driven efficient photocatalytic abatement of recalcitrant pollutants by centimeter-length MoO3/SiO2 monoliths with long service life. Appl Mater Today 23:101033. https://doi.org/10.1016/j.apmt.2021.101033
doi: 10.1016/j.apmt.2021.101033
Sharma S, Basu S (2020) Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants. Sep Purif Technol 231:115916. https://doi.org/10.1016/j.seppur.2019.115916
doi: 10.1016/j.seppur.2019.115916
Shi-Chao X, Tian-Zhe Z, Yang Q et al (2019) Fabrication of Z-scheme BiVO4/GO/g-C3N4 photocatalyst with efficient visble-light photocatalytic performance. J Inorg Mater 380:35. https://doi.org/10.15541/jim20190380
doi: 10.15541/jim20190380
Singh J, Arora A, Basu S (2019) Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. J Alloys Compd 808:151734. https://doi.org/10.1016/j.jallcom.2019.151734
doi: 10.1016/j.jallcom.2019.151734
Singla S, Basu S, Devi P (2023a) Solar light responsive 2D/2D BiVO4/SnS2 nanocomposite for photocatalytic elimination of recalcitrant antibiotics and photoelectrocatalytic water splitting with high performance. J Ind Eng Chem 118:119–131. https://doi.org/10.1016/j.jiec.2022.10.051
doi: 10.1016/j.jiec.2022.10.051
Singla S, Devi P, Basu S (2023b) Revolutionizing the role of solar light responsive BiVO4/BiOBr heterojunction photocatalyst for the photocatalytic deterioration of tetracycline and photoelectrocatalytic water splitting. Materials (Basel) 16:5661. https://doi.org/10.3390/ma16165661
doi: 10.3390/ma16165661
Singla S, Devi P, Basu S (2023c) Highly effectual photocatalytic remediation of tetracycline under the broad spectrum of sunlight by novel BiVO4/Sb2S3 nanocomposite. Catalysts 13:731. https://doi.org/10.3390/catal13040731
doi: 10.3390/catal13040731
Singla S, Sharma S, Basu S (2021) MoS2/WO3 heterojunction with the intensified photocatalytic performance for decomposition of organic pollutants under the broad array of solar light. J Clean Prod 324:129290. https://doi.org/10.1016/j.jclepro.2021.129290
doi: 10.1016/j.jclepro.2021.129290
Singla S, Sharma S, Basu S et al (2020) Graphene/graphitic carbon nitride-based ternary nanohybrids: synthesis methods, properties, and applications for photocatalytic hydrogen production. FlatChem 24:100200. https://doi.org/10.1016/j.flatc.2020.100200
doi: 10.1016/j.flatc.2020.100200
Singla S, Shetti NP, Basu S et al (2022) Hydrogen production technologies - membrane based separation, storage and challenges. J Environ Manage 302:113963. https://doi.org/10.1016/j.jenvman.2021.113963
doi: 10.1016/j.jenvman.2021.113963
Singla S, Singh P, Basu S, Devi P (2023d) BiVO4/MoSe2 photocatalyst for the photocatalytic abatement of tetracycline and photoelectrocatalytic water splitting. Mater Chem Phys 295:127111. https://doi.org/10.1016/j.matchemphys.2022.127111
doi: 10.1016/j.matchemphys.2022.127111
Soltani-nezhad F, Saljooqi A, Mostafavi A, Shamspur T (2020) Synthesis of Fe3O4/CdS–ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions. Ecotoxicol Environ Saf. 189:109886. https://doi.org/10.1016/j.ecoenv.2019.109886
doi: 10.1016/j.ecoenv.2019.109886
Sun H, Qin P, Wu Z et al (2020) Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: Mechanistic insight and degradation pathways. J Alloys Compd 834:155211. https://doi.org/10.1016/j.jallcom.2020.155211
doi: 10.1016/j.jallcom.2020.155211
Verma S, Tirumala Rao B, Jayabalan J et al (2019) Studies on growth of Au cube-ZnO core-shell nanoparticles for photocatalytic degradation of methylene blue and methyl orange dyes in aqueous media and in presence of different scavengers. J Environ Chem Eng 7:103209. https://doi.org/10.1016/j.jece.2019.103209
doi: 10.1016/j.jece.2019.103209
Wu Z, Ouyang M, Wang D, Liu X (2020) Boosted photo-electro-catalytic hydrogen evolution over the MoS2/MoO2 Schottky heterojunction by accelerating photo-generated charge kinetics. J Alloys Compd 832:154970. https://doi.org/10.1016/j.jallcom.2020.154970
doi: 10.1016/j.jallcom.2020.154970
Xu S, Fu D, Song K et al (2018) One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J. 349:368–375. https://doi.org/10.1016/j.cej.2018.05.100
doi: 10.1016/j.cej.2018.05.100
Ye C, Xu S, Wu Z, Wang M (2022) Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Bioanal Chem 414:4139–4147. https://doi.org/10.1007/s00216-022-04065-9
doi: 10.1007/s00216-022-04065-9
Zeng Q, Lyu L, Gao Y et al (2018) A self-sustaining monolithic photoelectrocatalytic/photovoltaic system based on a WO3/BiVO4 photoanode and Si PVC for efficiently producing clean energy from refractory organics degradation. Appl Catal B Environ. 238:309–317. https://doi.org/10.1016/j.apcatb.2018.07.005
doi: 10.1016/j.apcatb.2018.07.005
Zhang J, Liu Z, Liu Z (2016) Novel WO 3 /Sb 2 S 3 Heterojunction photocatalyst based on WO 3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl Mater Interfaces 8:9684–9691. https://doi.org/10.1021/acsami.6b00429
doi: 10.1021/acsami.6b00429
Zhu P, Hu M, Duan M et al (2020) High visible light response Z-scheme Ag3PO4 / g-C3N4 / ZnO composite photocatalyst for efficient degradation of tetracycline hydrochloride: Preparation, properties and mechanism. J Alloys Compd. 840:155714. https://doi.org/10.1016/j.jallcom.2020.155714
doi: 10.1016/j.jallcom.2020.155714
Zou JW, Di LZ, Sen KH et al (2021) Strong visible light absorption and abundant hotspots in Au-decorated WO3 nanobricks for efficient SERS and photocatalysis. ACS Omega. 42:28347–28355. https://doi.org/10.1021/acsomega.1c04536
doi: 10.1021/acsomega.1c04536
Zouhier M, Tanji K, Navio JA et al (2020) Preparation of ZnFe2O4/ZnO composite: effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination. J Photochem Photobiol A Chem 390:112305. https://doi.org/10.1016/j.jphotochem.2019.112305
doi: 10.1016/j.jphotochem.2019.112305
Zyoud AH, Zubi A, Zyoud SH et al (2019) Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects. Appl Clay Sci. 182:105294. https://doi.org/10.1016/j.clay.2019.105294
doi: 10.1016/j.clay.2019.105294

Auteurs

Shelly Singla (S)

Materials Science and Sensor Application, Central Scientific Instruments Organisation, Chandigarh, 160030, India.
School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.

Pooja Devi (P)

Materials Science and Sensor Application, Central Scientific Instruments Organisation, Chandigarh, 160030, India.

Soumen Basu (S)

School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India. soumen.basu@thapar.edu.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

Classifications MeSH