Antimalarial Activity of Anacardium occidentale Leaf Extracts Against Plasmodium falciparum Transketolase (PfTK).
Anacardium occidentale L
Antimalarial activity
Malaria
Plasmodium falciparum
Transketolase
Journal
Acta parasitologica
ISSN: 1896-1851
Titre abrégé: Acta Parasitol
Pays: Switzerland
ID NLM: 9301947
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
31
01
2023
accepted:
22
08
2023
medline:
23
11
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
ppublish
Résumé
As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.
Sections du résumé
BACKGROUND
BACKGROUND
As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC
CONCLUSION
CONCLUSIONS
The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.
Identifiants
pubmed: 37831282
doi: 10.1007/s11686-023-00718-6
pii: 10.1007/s11686-023-00718-6
doi:
Substances chimiques
Antimalarials
0
Transketolase
EC 2.2.1.1
Plant Extracts
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
832-841Subventions
Organisme : Department of Science and Technology, New Delhi
ID : SR/WOS-A/LS-456/2016
Informations de copyright
© 2023. The Author(s) under exclusive licence to Witold Stefański Institute of Parasitology, Polish Academy of Sciences.
Références
World Health Organization. World Malaria report – 2021. Page 18. https://www.who.int/news-room/fact-sheets/detail/malaria . Accessed Feb 2022
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93(3 Suppl):57. https://doi.org/10.4269/ajtmh.15-0007
doi: 10.4269/ajtmh.15-0007
pubmed: 26259943
pmcid: 4574275
Talapko J, Škrlec I, Alebić T, Jukić M, Včev A (2019) Malaria: the past and the present. Microorganisms 7(6):179. https://doi.org/10.3390/microorganisms7060179
doi: 10.3390/microorganisms7060179
pubmed: 31234443
pmcid: 6617065
Yasri S, Wiwanitkit V (2021) Artemisinin resistance: an important emerging clinical problem in tropical medicine. Int J Physiol Pathophysiol Pharmacol 13(6):152–157
pubmed: 35103097
pmcid: 8784654
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. https://doi.org/10.1038/nature12876
doi: 10.1038/nature12876
pubmed: 24352242
Selzer PM, Brutsche S, Wiesner P, Schmid P, Müllner H (2000) Target-based drug discovery for the development of novel anti-infectives. Int J Med Microbiol 290:191–201. https://doi.org/10.1016/S1438-4221(00)80090-9
doi: 10.1016/S1438-4221(00)80090-9
pubmed: 11045924
Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK (2008) Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol Biochem Parasitol 160(1):32–41. https://doi.org/10.1016/j.molbiopara.2008.03.005
doi: 10.1016/j.molbiopara.2008.03.005
pubmed: 18456347
Lima RB, Silva LF, Melo MR, Costa JS, Picanço NS, Lima ES, Vasconcellos MC, Boleti AP, Santos JM, Amorim RC, Chaves FC (2015) In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malaria J 14(1):1–4. https://doi.org/10.1186/s12936-015-0999-2
doi: 10.1186/s12936-015-0999-2
Sinhababu A, Banerjee A (2015) Medicinal plants for the treatment of malaria used by various tribes of Bankura, West Bengal, India. Res Rev: J Bot 4(1):33–36
Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Cho WC, Martins N (2020) Antioxidant, antimicrobial, and anticancer effects of Anacardium plants: an ethnopharmacological perspective. Front Endocrino 11:295. https://doi.org/10.3389/fendo.2020.00295
doi: 10.3389/fendo.2020.00295
Kubo I, Komatsu S, Ochi M (1986) Molluscicides from the cashew Anacardium occidentale and their large-scale isolation. J Agric Food Chem 34:970–97300295. https://doi.org/10.1021/jf00072a010
doi: 10.1021/jf00072a010
Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39(2):418–421. https://doi.org/10.1021/jf00002a039
doi: 10.1021/jf00002a039
Kubo I, Nitoda T, Tocoli FE, Green IR (2011) Multifunctional cytotoxic agents from Anacardium occidentale. Phytother Res 25:38–45. https://doi.org/10.1002/ptr.3109
doi: 10.1002/ptr.3109
pubmed: 20623613
Oliveira MS, Morais SM, Magalhães DV, Batista WP, Vieira IG, Craveiro AA, de Manezes JE, Carvalho AF, de Lima GP (2011) Antioxidant, larvicidal and anti acetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop 117:165–170. https://doi.org/10.1016/j.actatropica.2010.08.003
doi: 10.1016/j.actatropica.2010.08.003
pubmed: 20707981
Alvarenga TA, de Oliveira PF, de Souza JM, Tavares DC, Andrade E, Silva ML, Cunha WR, Groppo M, Januário AH, Magalhães LG, Pauletti PM (2016) Schistosomicidal activity of alkyl-phenols from the Cashew Anacardiumoccidentale against Schistosoma mansoni adult worms. J Agric Food Chem 64:8821–8827. https://doi.org/10.1016/j.bjp.2018.11.003
doi: 10.1016/j.bjp.2018.11.003
pubmed: 27934289
Gimenez VM, Alvarenga TA, Groppo M, Silva ML, Cunha WR, Januário AH, Smilkstein MJ, Riscoe MK, Pauletti PM (2019) Antiplasmodial evaluation of Anacardium occidentale and alkyl-phenols. RevistaBrasileira de Farmacognosia 29:36–39. https://doi.org/10.1016/j.bjp.2018.11.003
doi: 10.1016/j.bjp.2018.11.003
Shaikh JR, Patil MK (2020) Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud 8(2):603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
doi: 10.22271/chemi.2020.v8.i2i.8834
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
doi: 10.1016/S0021-9258(19)52451-6
pubmed: 14907713
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0
doi: 10.1038/227680a0
pubmed: 5432063
Kochetov GA (1982) Determination of transketolase activity via ferricyanide reduction. Methods Enzymol 89:43–44. https://doi.org/10.1016/S0076-6879(82)89009-5
doi: 10.1016/S0076-6879(82)89009-5
pubmed: 7144583
Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675. https://doi.org/10.1126/science.781840
doi: 10.1126/science.781840
pubmed: 781840
Zhang C, Willett C, Fremgen T (2003) Zebrafish: an animal model for toxicological studies. Current Protocols in Toxicology UNIT 1.7 (2003) 1.7.1–1.7.18, 2003 John Wiley & Sons, Inc
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U et al (2015) The effect of malaria control on P. falciparum in Africa between 2000 and 2015. Nature 526:207–211. https://doi.org/10.1038/nature15535
doi: 10.1038/nature15535
pubmed: 26375008
pmcid: 4820050
The malERA Refresh Consultative Panel on Insecticide and DrugResistance (2017) The malERA refresh consultative panel on insecticide and drug resistance malERA: an updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med 14(11):e1002450. https://doi.org/10.1371/journal.pmed.1002456
doi: 10.1371/journal.pmed.1002456
Antony HA, Parija SC (2016) Antimalarial drug resistance: an overview. Trop Parasitol 6(1):30. https://doi.org/10.4103/2229-5070.175081
doi: 10.4103/2229-5070.175081
pubmed: 26998432
pmcid: 4778180
Menard D, Dondorp A (2017) Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harbor Perspect Med 7(7):a025619. https://doi.org/10.1101/cshperspect.a025619
doi: 10.1101/cshperspect.a025619
KagerP A,Wetsteyn JC Malaria and drug resistance. Ed. TijdschrGeneeskd, 1996, 20;140:151–5]. PMID: 8618636.
Hasan M, Mazumder M, Hasan H, Chowdhury AS, Datta A, Khan M (2015) Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol Med 10(1):1–4. https://doi.org/10.1186/s13029-015-0037-3
doi: 10.1186/s13029-015-0037-3
Flannery EL, Chatterjee AK, Winzeler EA (2013) Antimalarial drug discovery—approaches and progress towards new medicines. Nat Rev Microbiol 11(12):849–862. https://doi.org/10.1038/nrmicro3138
doi: 10.1038/nrmicro3138
pubmed: 24217412
pmcid: 3941073
Nondo RS, Zofou D, Moshi MJ, Erasto P, Wanji S, Ngemenya MN, Titanji VP, Kidukuli AW, Masimba PJ (2015) Ethnobotanical survey and in vitro antiplasmodial activity of medicinal plants used to treat malaria in Kagera and Lindi regions. Tanzania J Med Plants Res 9(6):179–192. https://doi.org/10.5897/JMPR2014.5685
doi: 10.5897/JMPR2014.5685
Ngemenya M, Titanji V, Akam T, Yong N, Tane P, Fanso-free S, Berzins K (2005) Antiplasmodial activity and toxicity of extracts and products from selected medicinal plants used in Cameroon [MIM-MN-187588]. Acta Trop 95:S193–S194. https://doi.org/10.1155/2022/4661753
doi: 10.1155/2022/4661753
Kassa M, Mohana R, Hunde A (1996) Antimalarial activity of Bersama abyssinica against Plasmodium falciparum. Ethiop Phar J 14:16–21
Katuura E, Waako P, Tabuti JR, Bukenya-Ziraba R, Ogwal-Okeng J (2007) Antiplasmodial activity of extracts of selected medicinal plants used by local communities in western Uganda for treatment of malaria. Afr J Ecol 45:94–98. https://doi.org/10.1111/j.1365-2028.2007.00864.x
doi: 10.1111/j.1365-2028.2007.00864.x
Lemma MT, Ahmed AM, Elhady MT, Ngo HT, Vu TL, Sang TK, Campos-Alberto E, Sayed A, Mizukami S, Na-Bangchang K, Huy NT (2017) Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature. Parasitol Int 66(6):713–720. https://doi.org/10.1016/j.parint.2017.09.002
doi: 10.1016/j.parint.2017.09.002
pubmed: 28890153
Vilar MS, de Souza GL, Vilar Dde A, Leite JA, Raffin FN, Barbosa-Filho JM, Nogueira FH, Rodrigues-Mascarenhas S, Moura TF (2016) Assessment of phenolic compounds and anti-inflammatory activity of ethyl acetate phase of Anacardium occidentale L. Bark. Molecules 21(8):1087. https://doi.org/10.3390/molecules21081087
doi: 10.3390/molecules21081087
pubmed: 27548136
pmcid: 6273596