Avocado Paste Phenolics Mitigate a High-Fat Diet-Induced Plasma HDL Decrease in Male Wistar Rats, by Altering the mRNA Expression of Hepatic SCARB1.
Apolipoproteins
Byproducts
Dyslipidemia
Liver
Persea americana
Journal
Cell biochemistry and biophysics
ISSN: 1559-0283
Titre abrégé: Cell Biochem Biophys
Pays: United States
ID NLM: 9701934
Informations de publication
Date de publication:
13 Oct 2023
13 Oct 2023
Historique:
received:
30
05
2023
accepted:
03
10
2023
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
aheadofprint
Résumé
Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.
Identifiants
pubmed: 37831306
doi: 10.1007/s12013-023-01190-9
pii: 10.1007/s12013-023-01190-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Instituto de Bebidas de la Industria Mexicana de Coca-Cola
ID : PNCTA 2019
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 320351
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Alqarni, M. M. M., Osman, M. A., Al-Tamimi, D. S., Gassem, M. A., Al-Khalifa, A. S., Al-Juhaimi, F., & Mohamed Ahmed, I. A. (2019). Antioxidant and antihyperlipidemic effects of Ajwa date (Phoenix dactylifera L.) extracts in rats fed a cholesterol-rich diet. Journal of Food Biochemistry, 43(8), e12933
doi: 10.1111/jfbc.12933
pubmed: 31368543
Majdalawieh, A. F., Dalibalta, S., & Yousef, S. M. (2020). Effects of sesamin on fatty acid and cholesterol metabolism, macrophage cholesterol homeostasis and serum lipid profile: A comprehensive review. European Journal of Pharmacology, 885, 173417
doi: 10.1016/j.ejphar.2020.173417
pubmed: 32750369
Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021). Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Current Opinion of Pharmacology, 61, 21–27
doi: 10.1016/j.coph.2021.08.013
Behbodikhah, J., Ahmed, S., Elyasi, A., Kasselman, L. J., De Leon, J., Glass, A. D., & Reiss, A. B. (2021). Apolipoprotein B and cardiovascular disease: Biomarker and potential therapeutic target. Metabolites, 11, 10
doi: 10.3390/metabo11100690
Cochran, B. J., Ong, K. L., Manandhar, B., & Rye, K. A. (2021). APOA1: A protein with multiple therapeutic functions. Current Atherosclerosis Reports, 23, 3
doi: 10.1007/s11883-021-00906-7
Ma, S. Z., Sun, W. X., Gao, L., & Liu, S. D. (2019). Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes & Metabolic Syndrome, 12, 1543–1553
doi: 10.2147/DMSO.S219013
Verwilligen, R. A. F., Mulder, L., Araujo, P. M., Carneiro, M., Bussmann, J., Hoekstra, M., & Van Eck, M. (2023). Zebrafish as outgroup model to study evolution of scavenger receptor class B type I functions. BBA Molecular and Cell Biology of Lipids, 1868, 6
doi: 10.1016/j.bbalip.2023.159308
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394
doi: 10.1111/jfbc.13394
pubmed: 32691460
Burkholder-Cooley, N., Rajaram, S., Haddad, E., Fraser, G. E., & Jaceldo-Siegl, K. (2016). Comparison of polyphenol intakes according to distinct dietary patterns and food sources in the Adventist Health Study-2 cohort. British Journal of Nutrition, 115(12), 2162–2169
doi: 10.1017/S0007114516001331
pubmed: 27080936
Tlais, A. Z. A., Da Ros, A., Filannino, P., Vincentini, O., Gobbetti, M., & Di Cagno, R. (2021). Biotechnological re-cycling of apple by-products: A reservoir model to produce a dietary supplement fortified with biogenic phenolic compounds. Food Chemistry, 336, 127616
doi: 10.1016/j.foodchem.2020.127616
pubmed: 32763733
Salazar-Lopez, N. J., Dominguez-Avila, J. A., Yahia, E. M., Belmonte-Herrera, B. H., Wall-Medrano, A., Montalvo-Gonzalez, E., & Gonzalez-Aguilar, G. A. (2020). Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International 138, 109774.
Zuñiga-Martínez, B. S., Domínguez-Avila, J. A., Wall-Medrano, A., Ayala-Zavala, J. F., Hernández-Paredes, J., Salazar-López, N. J., Villegas-Ochoa, M. A., & González-Aguilar, G. A. (2021). Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: Characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. Journal of Food Measurement and Characterization, 15, 1–17
Corella-Salazar, D. A., Dominguez-Avila, J. A., Montiel-Herrera, M., Astiazaran-Garcia, H., Salazar-Lopez, N. J., Serafin-Garcia, M. S., Olivas-Orozco, G. I., Molina-Corral, F. J., & Gonzalez-Aguilar, G. A. (2021). Sub-chronic consumption of a phenolic-rich avocado paste extract induces GLP-1-, leptin-, and adiponectin-mediated satiety in Wistar rats. Journal of Food Biochemistry, 45(11), e13957
doi: 10.1111/jfbc.13957
pubmed: 34605050
Preciado-Saldana, A. M., Dominguez-Avila, J. A., Ayala-Zavala, J. F., Astiazaran-Garcia, H. F., Montiel-Herrera, M., Villegas-Ochoa, M. A., Gonzalez-Aguilar, G. A., & Wall-Medrano, A. (2022). Mango “Ataulfo” peel extract improves metabolic dysregulation in prediabetic Wistar rats. Life, 12, 4
doi: 10.3390/life12040532
Dominguez-Avila, J. A., Alvarez-Parrilla, E., Lopez-Diaz, J. A., Maldonado-Mendoza, I. E., Gomez-Garcia Mdel, C., & de la Rosa, L. A. (2015). The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chemistry, 168, 529–537
doi: 10.1016/j.foodchem.2014.07.092
pubmed: 25172744
Dominguez-Avila, J. A., Astiazaran-Garcia, H., Wall-Medrano, A., de la Rosa, L. A., Alvarez-Parrilla, E., & Gonzalez-Aguilar, G. A. (2019). Mango phenolics increase the serum apolipoprotein A1/B ratio in rats fed high cholesterol and sodium cholate diets. Journal of the Science of Food and Agriculture, 99(4), 1604–1612
doi: 10.1002/jsfa.9340
pubmed: 30187493
Rotimi, S. O., Adelani, I. B., Bankole, G. E., & Rotimi, O. A. (2018). Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomedicine & Pharmacotherapy, 101, 430–437
doi: 10.1016/j.biopha.2018.02.116
Yu, L., Lu, H. F., Yang, X. F., Li, R. Q., Shi, J. J., Yu, Y. T., Ma, C. Q., Sun, F. C., Zhang, S. Z., & Zhang, F. X. (2021). Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. Toxicology and Applied Pharmacology 412, 115388
Alissa, E. M., & Ferns, G. A. (2017). Dietary fruits and vegetables and cardiovascular diseases risk. Critical Reviews in Food Science and Nutrition, 57(9), 1950–1962
pubmed: 26192884
Rodríguez-Pérez, C., Segura-Carretero, A., & del Mar Contreras, M. (2019). Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1212–1229
doi: 10.1080/10408398.2017.1399859
pubmed: 29156939
Tuzcu, Z., Orhan, C., Sahin, N., Juturu, V., & Sahin, K. (2017). Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxidative Medicine and Cellular Longevity, 2017, 1583098
doi: 10.1155/2017/1583098
pubmed: 28396714
pmcid: 5370473
Zary-Sikorska, E., Fotschki, B., Kolodziejczyk, K., Jurgonski, A., Kosmala, M., Milala, J., Majewski, M., Ognik, K., & Juskiewicz, J. (2021). Strawberry phenolic extracts effectively mitigated metabolic disturbances associated with high-fat ingestion in rats depending on the ellagitannin polymerization degree. Food & Function, 12(13), 5779–5792
doi: 10.1039/D1FO00894C
O’Morain, V. L., Chan, Y. H., Williams, J. O., Alotibi, R., Alahmadi, A., Rodrigues, N. P., Plummer, S. F., Hughes, T. R., Michael, D. R., & Ramji, D. P. (2021). The Lab4P consortium of probiotics attenuates atherosclerosis in LDL receptor deficient mice fed a high fat diet and causes plaque stabilization by inhibiting inflammation and several pro-atherogenic processes. Molecular Nutrition & Food Research, 65, 17
Retterstol, K., Svendsen, M., Narverud, I., & Holven, K. B. (2018). Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: A randomized controlled study. Atherosclerosis, 279, 52–61
doi: 10.1016/j.atherosclerosis.2018.10.013
pubmed: 30408717
Lu, M., Wan, Y., Yang, B., Huggins, C. E., & Li, D. (2018). Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials. British Journal of Nutrition, 119(1), 96–108
doi: 10.1017/S0007114517002902
pubmed: 29212558
Choi, H. K., Hwang, J. T., Nam, T. G., Kim, S. H., Min, D. K., Park, S. W., & Chung, M. Y. (2017). Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food & Function, 8(12), 4582–4591
doi: 10.1039/C7FO00562H
Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nature Reviews Cardiology, 18(10), 712–723
doi: 10.1038/s41569-021-00538-z
pubmed: 33833449
Azemi, N. A., Abu-Bakar, L., Ismail, N., Sevakumaran, V., & Tengku-Muhammad, T. S. (2021). Linoleic acid treatment increases the expression of scavenger receptor class B type 1 (SR-B1) in in-vitro model. Atherosclerosis, 331, e128
doi: 10.1016/j.atherosclerosis.2021.06.382
Uto-Kondo, H., Ayaori, M., Ogura, M., Nakaya, K., Ito, M., Suzuki, A., Takiguchi, S., Yakushiji, E., Terao, Y., Ozasa, H., Hisada, T., Sasaki, M., Ohsuzu, F., & Ikewaki, K. (2010). Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circulation Research, 106(4), 779–787
doi: 10.1161/CIRCRESAHA.109.206615
pubmed: 20075335
Lenahan, C., Huang, L., Travis, Z. D., & Zhang, J. H. (2019). Scavenger receptor class B type 1 (SR-B1) and the modifiable risk factors of stroke. Chinese Neurosurgical Journal, 5, 30
doi: 10.1186/s41016-019-0178-3
pubmed: 32922929
pmcid: 7398188
Cervantes-Paz, B., & Yahia, E. M. (2021). Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Comprehensive Reviews in Food Science and Food Safety, 20(4), 4120–4158
doi: 10.1111/1541-4337.12784
pubmed: 34146454
Ramos-Aguilar, A. L., Ornelas-Paz, J., Tapia-Vargas, L. M., Gardea-Bejar, A. A., Yahia, E. M., Ornelas-Paz, J. D., Perez-Martinez, J. D., Rios-Velasco, C., & Escalante-Minakata, P. (2021). Metabolomic analysis and physical attributes of ripe fruits from Mexican Creole (Persea americana var. Drymifolia) and ‘Hass’ avocados. Food Chemistry, 354, 129571
Ramos-Aguilar, A. L., Ornelas-Paz, J., Tapia-Vargas, L. M., Gardea-Bejar, A. A., Yahia, E. M., Ornelas-Paz, J. D., Ruiz-Cruz, S., Rios-Velasco, C., & Escalante-Minakata, P. (2021). Effect of cultivar on the content of selected phytochemicals in avocado peels. Food Research International, 140, 110024