ZnS QDs Stabilized Concurrently with Glutathione and L-cysteine for Highly Sensitive Determining Adriamycin Based on the Fluorescence Enhancement Mechanism.

Adriamycin Enhanced-fluorescence nanoprobe Photoinduced electron transfer ZnS QDs-GSH/L-Cys

Journal

Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341

Informations de publication

Date de publication:
13 Oct 2023
Historique:
received: 22 08 2023
accepted: 22 09 2023
medline: 13 10 2023
pubmed: 13 10 2023
entrez: 13 10 2023
Statut: aheadofprint

Résumé

In this work, a facile and fast aqueous-phase synthetic method is proposed to prepare water-soluble ZnS quantum dots stabilized simultaneously with glutathione and L-cysteine (ZnS QDs-GSH/L-Cys). As-synthesized ZnS QDs-GSH/L-Cys were monodispersed spherical nanocrystals with a mean diameter of 5.0 ± 0.7 nm. Besides, the obtained ZnS QDs-GSH/L-Cys emitted more intensive blue fluorescence and exhibited an improved stability in aqueous solution compared with ZnS quantum dots merely stabilized with GSH (ZnS QDs-GSH). Interestingly, Adriamycin, a representative anticancer drug, was added into the solution of ZnS QDs-GSH/L-Cys, the blue fluorescence of ZnS QDs-GSH/L-Cys was greatly enhanced instead of being quenched, which indicated that ZnS QDs-GSH/L-Cys can be used as an enhanced-fluorescence nanoprobe for determining Adriamycin. The observed fluorescent enhancement could be attributed to the blocking of photoinduced electron transfer (PET) in ZnS QDs-GSH/L-Cys due to the electrostatic interaction between the -COO- groups on the surface of quantum dots and the -NH

Identifiants

pubmed: 37831353
doi: 10.1007/s10895-023-03452-4
pii: 10.1007/s10895-023-03452-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Piao Z et al (2022) Recent advances in metal Chalcogenide Quantum Dots: from Material Design to Biomedical Applications. Adv Funct Mater 32(44):2207662
doi: 10.1002/adfm.202207662
Yang W et al (2022) A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chem 24(2):675–700
doi: 10.1039/D1GC02964A
Xaba T (2021) Green synthesis of ZnS nanoparticles and fabrication of ZnS–chitosan nanocomposites for the removal of Cr (vi) ion from wastewater. Green Process Synthesis 10(1):374–383
doi: 10.1515/gps-2021-0026
Gao N et al (2021) Defective Ag-In-S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. J Mater Chem B 9(43):8971–8979
doi: 10.1039/D1TB01681D pubmed: 34643636
Mandani S et al (2021) Development of a new simple spectroscopic determination coupled acid-motivated delivery system based on fluorescence turn-off MSNs@ MPA-ZnS QDs for infection. Microporous Mesoporous Mater 317:110971
doi: 10.1016/j.micromeso.2021.110971
Ameta C et al (2023) Microwave-assisted synthesis of quantum dots in: Quantum Dots. Elsevier, pp 115–145
Mansour A et al (2021) Synthesis, optical properties and stabilization of ZnS quantum dots by polymeric matrices. J Inorg Organomet Polym Mater 31:1443–1450
doi: 10.1007/s10904-021-01884-8
Jin Q et al (2023) Fabrication of CuInZnS/ZnS Quantum dot microbeads by a two-step Approach of emulsification–solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg Chem 62(8):3474–3484
doi: 10.1021/acs.inorgchem.2c03783 pubmed: 36789761
Guo C et al (2020) ZnS Quantum Dots/Gelatin nanocomposites with a Thermo-Responsive Sol–Gel Transition Property produced by a facile and Green One-Pot Method. ACS Sustain Chem Eng 8(11):4346–4352
doi: 10.1021/acssuschemeng.9b06395
Yang H et al (2022) A versatile strategy for loading silica particles with dyes and quantum dots. Colloid and Interface Science Communications 47:100594
doi: 10.1016/j.colcom.2022.100594
Goryacheva OA et al (2022) Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Anal Bioanal Chem 414(15):4427–4439
doi: 10.1007/s00216-022-04005-7 pubmed: 35303136
Papadopoulou A et al (2022) Synthesis, characterization and evaluation of aqueous Zn-based quantum dots for bioapplications. Dalton Trans 51(9):3452–3461
doi: 10.1039/D1DT04021A pubmed: 35037008
Wang X et al (2023) An off-off fluorescence sensor based on ZnS quantum dots for detection of glutathione. J Photochem Photobiol A 435:114264
doi: 10.1016/j.jphotochem.2022.114264
Nash-Montes VI et al (2022) Effect of the capping agent on the photocatalytic performance of ZnS nanostructures. MRS Adv 7(10–11):203–207
doi: 10.1557/s43580-022-00251-0
Daramola OA et al (2017) Facile synthesis of glutathione-l-Cysteine co-capped CdTe core shell system: study on optical and structural morphology. J Nanosci Nanotechnol 17(8):5359–5365
doi: 10.1166/jnn.2017.13823
Chen Y et al (2013) Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots. Inorg Chem 52(14):7819–7821
doi: 10.1021/ic400083w pubmed: 23805901
Yao C et al (2020) Aggregation-Induced Emission Properties of glutathione and L-Cysteine capped CdS Quantum Dots and their application as Zn (II) probe. J Fluoresc 30:1601–1609
doi: 10.1007/s10895-020-02596-x pubmed: 32780264
Daramola OA et al (2020) Synthesis of pH sensitive dual capped CdTe QDs: their Optical Properties and structural morphology. J Fluoresc 30(3):557–564
doi: 10.1007/s10895-020-02526-x pubmed: 32219628
Kamath A et al (2022) Atomistic investigations of polymer-doxorubicin-CNT compatibility for targeted cancer treatment: a molecular dynamics study. J Mol Liq 348:118005
doi: 10.1016/j.molliq.2021.118005
Bai X et al (2021) Protein/gold nanoparticle-based sensors for monitoring the progression of adriamycin nephropathy. ACS Appl Nano Mater 4(5):4919–4929
doi: 10.1021/acsanm.1c00468
Zhong Y et al (2020) Dissecting Chemical Composition and Cardioprotective Effects of Fuzhengkangfu Decoction against Doxorubicin-Induced cardiotoxicity by LC–MS and Bioinformatics Approaches. ACS Omega 5(23):14051–14060
doi: 10.1021/acsomega.0c01494 pubmed: 32566871 pmcid: 7301600
Safaei M et al (2021) A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 229:122247
doi: 10.1016/j.talanta.2021.122247 pubmed: 33838767
Materon EM et al (2018) Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem 827:64–72
doi: 10.1016/j.jelechem.2018.09.010
Wang C et al (2021) Dual-emission fluorescence sensor based on biocompatible bovine serum albumin stabilized copper nanoclusters for ratio and visualization detection of hydrogen peroxide. Dyes Pigm 190:109312
doi: 10.1016/j.dyepig.2021.109312
Hu J et al (2018) Core/shell upconversion nanoparticles with intense fluorescence for detecting doxorubicin in vivo. RSC Adv 8(38):21505–21512
doi: 10.1039/C8RA02928H pubmed: 35539931 pmcid: 9081841
Amin N et al (2021) Flexible electrospun nanofibrous film integrated with fluorescent carbon dots for smartphone-based detection and cellular imaging application. Spectrochim Acta A Mol Biomol Spectrosc 260:119944
doi: 10.1016/j.saa.2021.119944 pubmed: 34020381
Bhuvaneswari K et al (2020) Glutathione capped inverted core-shell quantum dots as an efficient photocatalyst for degradation of organic dyes. Mater Sci Semiconduct Process 106:104760
doi: 10.1016/j.mssp.2019.104760
Deepa S et al (2020) A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: a voltammetric study. J Electroanal Chem 879:114748
doi: 10.1016/j.jelechem.2020.114748
Dharmalingam SR et al (2014) A simple HPLC Bioanalytical Method for the determination of Doxorubicin Hydrochloride in Rat plasma: application to Pharmacokinetic Studies. Trop J Pharm Res 13(3):409–415
doi: 10.4314/tjpr.v13i3.15
Y. H et al (2004) Electrochemical Behavior and Square Wave Voltammetric determination of Doxorubicin Hydrochloride. Arch Pharm Res 27(1):31–34
Giroux EL et al (1972) Competition for zinc among serum albumin and amino acids. Biochim et Biophys Acta (BBA)-General Subj 273(1):64–72
doi: 10.1016/0304-4165(72)90191-2
Mbaz GIM et al (2021) Instant removal of methylene blue using water-soluble non-cadmium based quantum dots. Mater Lett 303:130495
doi: 10.1016/j.matlet.2021.130495
Metwly W et al (2023) Glutathione-capped ZnS Quantum Dots-Urease Conjugate as a highly sensitive urea probe. J Inorg Organomet Polym Mater 33:1388–1399
doi: 10.1007/s10904-023-02592-1
Patel J et al (2020) Mn-doped ZnS quantum dots–an effective nanoscale sensor. Microchem J 155:104755
doi: 10.1016/j.microc.2020.104755
Hu J et al (2022) Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: a review. Anal Chim Acta 1209:338885
doi: 10.1016/j.aca.2021.338885 pubmed: 35569838

Auteurs

Jingyi Duan (J)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.

Qikun Zhang (Q)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.

Juan Du (J)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.

Xinyu Liu (X)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.

Shengmei Wu (S)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.

Shenghua Liao (S)

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China. liaoshenghua@cpu.edu.cn.

Classifications MeSH