ZnS QDs Stabilized Concurrently with Glutathione and L-cysteine for Highly Sensitive Determining Adriamycin Based on the Fluorescence Enhancement Mechanism.
Adriamycin
Enhanced-fluorescence nanoprobe
Photoinduced electron transfer
ZnS QDs-GSH/L-Cys
Journal
Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341
Informations de publication
Date de publication:
13 Oct 2023
13 Oct 2023
Historique:
received:
22
08
2023
accepted:
22
09
2023
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
aheadofprint
Résumé
In this work, a facile and fast aqueous-phase synthetic method is proposed to prepare water-soluble ZnS quantum dots stabilized simultaneously with glutathione and L-cysteine (ZnS QDs-GSH/L-Cys). As-synthesized ZnS QDs-GSH/L-Cys were monodispersed spherical nanocrystals with a mean diameter of 5.0 ± 0.7 nm. Besides, the obtained ZnS QDs-GSH/L-Cys emitted more intensive blue fluorescence and exhibited an improved stability in aqueous solution compared with ZnS quantum dots merely stabilized with GSH (ZnS QDs-GSH). Interestingly, Adriamycin, a representative anticancer drug, was added into the solution of ZnS QDs-GSH/L-Cys, the blue fluorescence of ZnS QDs-GSH/L-Cys was greatly enhanced instead of being quenched, which indicated that ZnS QDs-GSH/L-Cys can be used as an enhanced-fluorescence nanoprobe for determining Adriamycin. The observed fluorescent enhancement could be attributed to the blocking of photoinduced electron transfer (PET) in ZnS QDs-GSH/L-Cys due to the electrostatic interaction between the -COO- groups on the surface of quantum dots and the -NH
Identifiants
pubmed: 37831353
doi: 10.1007/s10895-023-03452-4
pii: 10.1007/s10895-023-03452-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Piao Z et al (2022) Recent advances in metal Chalcogenide Quantum Dots: from Material Design to Biomedical Applications. Adv Funct Mater 32(44):2207662
doi: 10.1002/adfm.202207662
Yang W et al (2022) A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chem 24(2):675–700
doi: 10.1039/D1GC02964A
Xaba T (2021) Green synthesis of ZnS nanoparticles and fabrication of ZnS–chitosan nanocomposites for the removal of Cr (vi) ion from wastewater. Green Process Synthesis 10(1):374–383
doi: 10.1515/gps-2021-0026
Gao N et al (2021) Defective Ag-In-S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. J Mater Chem B 9(43):8971–8979
doi: 10.1039/D1TB01681D
pubmed: 34643636
Mandani S et al (2021) Development of a new simple spectroscopic determination coupled acid-motivated delivery system based on fluorescence turn-off MSNs@ MPA-ZnS QDs for infection. Microporous Mesoporous Mater 317:110971
doi: 10.1016/j.micromeso.2021.110971
Ameta C et al (2023) Microwave-assisted synthesis of quantum dots in: Quantum Dots. Elsevier, pp 115–145
Mansour A et al (2021) Synthesis, optical properties and stabilization of ZnS quantum dots by polymeric matrices. J Inorg Organomet Polym Mater 31:1443–1450
doi: 10.1007/s10904-021-01884-8
Jin Q et al (2023) Fabrication of CuInZnS/ZnS Quantum dot microbeads by a two-step Approach of emulsification–solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg Chem 62(8):3474–3484
doi: 10.1021/acs.inorgchem.2c03783
pubmed: 36789761
Guo C et al (2020) ZnS Quantum Dots/Gelatin nanocomposites with a Thermo-Responsive Sol–Gel Transition Property produced by a facile and Green One-Pot Method. ACS Sustain Chem Eng 8(11):4346–4352
doi: 10.1021/acssuschemeng.9b06395
Yang H et al (2022) A versatile strategy for loading silica particles with dyes and quantum dots. Colloid and Interface Science Communications 47:100594
doi: 10.1016/j.colcom.2022.100594
Goryacheva OA et al (2022) Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Anal Bioanal Chem 414(15):4427–4439
doi: 10.1007/s00216-022-04005-7
pubmed: 35303136
Papadopoulou A et al (2022) Synthesis, characterization and evaluation of aqueous Zn-based quantum dots for bioapplications. Dalton Trans 51(9):3452–3461
doi: 10.1039/D1DT04021A
pubmed: 35037008
Wang X et al (2023) An off-off fluorescence sensor based on ZnS quantum dots for detection of glutathione. J Photochem Photobiol A 435:114264
doi: 10.1016/j.jphotochem.2022.114264
Nash-Montes VI et al (2022) Effect of the capping agent on the photocatalytic performance of ZnS nanostructures. MRS Adv 7(10–11):203–207
doi: 10.1557/s43580-022-00251-0
Daramola OA et al (2017) Facile synthesis of glutathione-l-Cysteine co-capped CdTe core shell system: study on optical and structural morphology. J Nanosci Nanotechnol 17(8):5359–5365
doi: 10.1166/jnn.2017.13823
Chen Y et al (2013) Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots. Inorg Chem 52(14):7819–7821
doi: 10.1021/ic400083w
pubmed: 23805901
Yao C et al (2020) Aggregation-Induced Emission Properties of glutathione and L-Cysteine capped CdS Quantum Dots and their application as Zn (II) probe. J Fluoresc 30:1601–1609
doi: 10.1007/s10895-020-02596-x
pubmed: 32780264
Daramola OA et al (2020) Synthesis of pH sensitive dual capped CdTe QDs: their Optical Properties and structural morphology. J Fluoresc 30(3):557–564
doi: 10.1007/s10895-020-02526-x
pubmed: 32219628
Kamath A et al (2022) Atomistic investigations of polymer-doxorubicin-CNT compatibility for targeted cancer treatment: a molecular dynamics study. J Mol Liq 348:118005
doi: 10.1016/j.molliq.2021.118005
Bai X et al (2021) Protein/gold nanoparticle-based sensors for monitoring the progression of adriamycin nephropathy. ACS Appl Nano Mater 4(5):4919–4929
doi: 10.1021/acsanm.1c00468
Zhong Y et al (2020) Dissecting Chemical Composition and Cardioprotective Effects of Fuzhengkangfu Decoction against Doxorubicin-Induced cardiotoxicity by LC–MS and Bioinformatics Approaches. ACS Omega 5(23):14051–14060
doi: 10.1021/acsomega.0c01494
pubmed: 32566871
pmcid: 7301600
Safaei M et al (2021) A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 229:122247
doi: 10.1016/j.talanta.2021.122247
pubmed: 33838767
Materon EM et al (2018) Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem 827:64–72
doi: 10.1016/j.jelechem.2018.09.010
Wang C et al (2021) Dual-emission fluorescence sensor based on biocompatible bovine serum albumin stabilized copper nanoclusters for ratio and visualization detection of hydrogen peroxide. Dyes Pigm 190:109312
doi: 10.1016/j.dyepig.2021.109312
Hu J et al (2018) Core/shell upconversion nanoparticles with intense fluorescence for detecting doxorubicin in vivo. RSC Adv 8(38):21505–21512
doi: 10.1039/C8RA02928H
pubmed: 35539931
pmcid: 9081841
Amin N et al (2021) Flexible electrospun nanofibrous film integrated with fluorescent carbon dots for smartphone-based detection and cellular imaging application. Spectrochim Acta A Mol Biomol Spectrosc 260:119944
doi: 10.1016/j.saa.2021.119944
pubmed: 34020381
Bhuvaneswari K et al (2020) Glutathione capped inverted core-shell quantum dots as an efficient photocatalyst for degradation of organic dyes. Mater Sci Semiconduct Process 106:104760
doi: 10.1016/j.mssp.2019.104760
Deepa S et al (2020) A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: a voltammetric study. J Electroanal Chem 879:114748
doi: 10.1016/j.jelechem.2020.114748
Dharmalingam SR et al (2014) A simple HPLC Bioanalytical Method for the determination of Doxorubicin Hydrochloride in Rat plasma: application to Pharmacokinetic Studies. Trop J Pharm Res 13(3):409–415
doi: 10.4314/tjpr.v13i3.15
Y. H et al (2004) Electrochemical Behavior and Square Wave Voltammetric determination of Doxorubicin Hydrochloride. Arch Pharm Res 27(1):31–34
Giroux EL et al (1972) Competition for zinc among serum albumin and amino acids. Biochim et Biophys Acta (BBA)-General Subj 273(1):64–72
doi: 10.1016/0304-4165(72)90191-2
Mbaz GIM et al (2021) Instant removal of methylene blue using water-soluble non-cadmium based quantum dots. Mater Lett 303:130495
doi: 10.1016/j.matlet.2021.130495
Metwly W et al (2023) Glutathione-capped ZnS Quantum Dots-Urease Conjugate as a highly sensitive urea probe. J Inorg Organomet Polym Mater 33:1388–1399
doi: 10.1007/s10904-023-02592-1
Patel J et al (2020) Mn-doped ZnS quantum dots–an effective nanoscale sensor. Microchem J 155:104755
doi: 10.1016/j.microc.2020.104755
Hu J et al (2022) Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: a review. Anal Chim Acta 1209:338885
doi: 10.1016/j.aca.2021.338885
pubmed: 35569838