The Protective Effect of Chronic Intermittent Hypobaric Hypoxia on Preventing the Destruction of CD34
Aplastic anaemia
Apoptosis
Chronic intermittent hypobaric hypoxia
Hematopoietic stem cells
Th1/Th2 balance
Journal
Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767
Informations de publication
Date de publication:
13 Oct 2023
13 Oct 2023
Historique:
accepted:
11
09
2023
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
aheadofprint
Résumé
Aplastic anaemia (AA) is a haematopoietic disorder caused by immune-mediated attack on haematopoietic stem cells (HSCs). Stem cell transplantation and immunosuppressive therapy remain the major treatment choice for AA patients but have limited benefits and undesired side effects. The aim of our study was to clarify the protective role of immunity of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in AA. Our integrative analysis demonstrated that CIHH pre-treatment significantly improved haematopoiesis and survival in an AA rat model. We further confirmed that CIHH pre-treatment was closely associated with the Th1/Th2 balance and a large number of negative regulatory haematopoietic factors, such as TNF-α and IFN-γ, produced by hyperactive Th1 lymphocytes released in AA rats, which induced the death program in a large number of CD34
Identifiants
pubmed: 37831395
doi: 10.1007/s12015-023-10631-0
pii: 10.1007/s12015-023-10631-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 81900249
Organisme : Natural Science Foundation of Zhejiang Province
ID : LY23H020001
Organisme : Steel and Iron Foundation of Hebei Province
ID : H2020206003
Organisme : Natural Science Foundation of Liaoning Province
ID : 2022-MS-230
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Bacigalupo, A. (2017). How I treat acquired aplastic anemia. Blood, 129(11), 1428–1436.
doi: 10.1182/blood-2016-08-693481
pubmed: 28096088
Huuhtanen, J., Lundgren, S., Keranen, M. A., Feng, X. M., Kerr, C. M., Jokinen, E. (2019). T Cell Landscape of Immune Aplastic Anemia reveals a Convergent Antigen-Specific signature. Blood 134 (Suppl.1), 108–108.
Ahmed, F., Ings, S. J., Pizzey, A. R., Blundell, M. P., Thrasher, A. J., Ye, H. T., Ahmed, F., Ings, S. J., Pizzey, A. R., Blundell, M. P., Thrasher, A. J., Ye, H. T., Fahey, A., Linch, D. C., & Yong, K. L. (2004). Impaired bone marrow homing of cytokine-activated CD34 + cells in the NOD/SCID model. Blood, 103(6), 2079–2087.
doi: 10.1182/blood-2003-06-1770
pubmed: 14630817
Purev, E., Tian, X., Aue, G., Pantin, J., Vo, P., Shalabi, R., et al. (2017). Allogeneic transplantation using CD34(+) selected peripheral blood progenitor cells combined with non-mobilized donor T cells for refractory severe aplastic anaemia. British Journal of Haematology, 176(6), 950–960.
doi: 10.1111/bjh.14448
pubmed: 28169418
pmcid: 7440634
Masouridi-Levrat, S., Simonetta, F., & Chalandon, Y. (2016). Immunological basis of bone marrow failure after allogeneic hematopoietic stem cell transplantation. Frontiers in Immunology, 7, 362.
doi: 10.3389/fimmu.2016.00362
pubmed: 27695456
pmcid: 5025429
Jain, R., Trehan, A., Bansal, D., & Varma, N. (2019). Aplastic anemia in children: How good is immunosuppressive therapy? Pediatric Hematology and Oncology, 36(4), 211–221.
doi: 10.1080/08880018.2019.1621970
pubmed: 31287349
Kojima, S., Hibi, S., Kosaka, Y., Yamamoto, M., Tsuchida, M., Mugishima, H., Kojima, S., Hibi, S., Kosaka, Y., Yamamoto, M., Tsuchida, M., Mugishima, H., Sugita, K., Yabe, H., Ohara, A., & Tsukimoto, I. (2000). Immunosuppressive therapy using antithymocyte globulin, cyclosporine, and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood, 96(6), 2049–2054.
doi: 10.1182/blood.V96.6.2049
pubmed: 10979946
Kook, H., Risitano, A. M., Zeng, W., Wlodarski, M., Lottemann, C., Nakamura, R., Kook, H., Risitano, A. M., Zeng, W., Wlodarski, M., Lottemann, C., Nakamura, R., Barrett, J., Young, N. S., & Maciejewski, J. P. (2002). Changes in T-cell receptor VB repertoire in aplastic anemia: Effects of different immunosuppressive regimens. Blood, 99(10), 3668–3675.
doi: 10.1182/blood.V99.10.3668
pubmed: 11986222
Ye, L., Zhang, F. K., & Kojima, S. (2020). Current insights into the treatments of severe aplastic anemia in China. International Journal of Hematology, 112(3), 292–299.
doi: 10.1007/s12185-020-02955-1
pubmed: 32748215
Wang, J., Wu, Y., Yuan, F., Liu, Y., Wang, X., Cao, F., Wang, J., Wu, Y., Yuan, F., Liu, Y., Wang, X., Cao, F., Zhang, Yi., & Wang, S. (2016). Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats. Life Sciences, 160, 57–63.
doi: 10.1016/j.lfs.2016.07.002
pubmed: 27404016
Tian, Y. M., Liu, Y., Wang, S., Dong, Y., Su, T., Ma, H. J., Tian, Y.-M., Liu, Y., Wang, S., Dong, Yi., Su, T., Ma, H.-J., & Zhang, Yi. (2016). Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sciences, 150, 1–7.
doi: 10.1016/j.lfs.2016.02.053
pubmed: 26883978
Wang, J., Zhang, S., Ma, H., Yang, S., Liu, Z., Wu, X., Wang, J., Zhang, S., Ma, H., Yang, S., Liu, Z., Wu, X., Wang, S., Zhang, Yi., & Liu, Y. (2017). Chronic intermittent hypobaric hypoxia pretreatment ameliorates Ischemia-Induced Cognitive Dysfunction through activation of ERK1/2-CREB-BDNF pathway in anesthetized mice. Neurochemical Research, 42(2), 501–512.
doi: 10.1007/s11064-016-2097-4
pubmed: 27822668
Pena, E., Brito, J., El Alam, S., & Siques, P. (2020). Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. International Journal of Molecular Sciences, 21(17), 6421.
doi: 10.3390/ijms21176421
pubmed: 32899304
pmcid: 7503689
Cheng, W. J., Liu, X., Zhang, L., Guo, X. Q., Wang, F. W., Zhang, Y., Cheng, W.-J., Liu, X., Zhang, Li., Guo, X.-Q., Wang, F.-W., Zhang, Yi., & Tian, Y.-M. (2019). Chronic intermittent hypobaric hypoxia attenuates skeletal muscle ischemia-reperfusion injury in mice. Life Sciences, 231, 116533.
doi: 10.1016/j.lfs.2019.06.008
pubmed: 31173783
Shi, M., Cui, F., Liu, A. J., Ma, H. J., Cheng, M., Song, S. X., Shi, M., Cui, F., Liu, A.-J., Ma, H.-J., Cheng, M., Song, S.-X., Yuan, F., Li, D.-P., & Zhang, Yi. (2015). The protective effects of chronic intermittent hypobaric hypoxia pretreatment against collagen-induced arthritis in rats. Journal of Inflammation (London), 12, 23.
doi: 10.1186/s12950-015-0068-1
Yang, J., Zhang, L., Wang, H., Guo, Z., Liu, Y., Zhang, Y., et al. (2017). Protective Effects of Chronic Intermittent Hypobaric Hypoxia pretreatment against aplastic Anemia through improving the adhesiveness and stress of mesenchymal stem cells in rats. Stem Cells Int, 2017, 5706193.
doi: 10.1155/2017/5706193
pubmed: 28798776
pmcid: 5534323
Askari, V. R., Alavinezhad, A., Rahimi, V. B., Rezaee, S. A., & Boskabady, M. H. (2021). Immuno-modulatory effects of methanolic extract of Ferula szowitsiana on isolated human Th1/Th2/Treg cytokines levels, and their genes expression and nitric oxide production. Cytokine, 138, 155387.
doi: 10.1016/j.cyto.2020.155387
pubmed: 33278664
Chen, T. T., Chen, Y. M., Bao, W. T., & Lu, W. (2020). T-lymphocyte subsets and Th1/Th2 cytokines in convalescent patients with Epstein-Barr virus-associated aplastic anemia. Hematology, 25(1), 11–16.
doi: 10.1080/16078454.2019.1702304
pubmed: 31842718
Zhang, L., Lin, S., Zheng, Y., & Wang, H. (2020). Matrine regulates Th1/Th2 balance to treat Eczema by Upregulating Interferon-gamma. Journal of Nanoscience and Nanotechnology, 20(6), 3378–3386.
doi: 10.1166/jnn.2020.17417
pubmed: 31748030
Watanabe, S., Yamada, Y., & Murakami, H. (2020). Expression of Th1/Th2 cell-related chemokine receptors on CD4(+) lymphocytes under physiological conditions. International Journal of Laboratory Hematology, 42(1), 68–76.
doi: 10.1111/ijlh.13141
pubmed: 31825162
Wang, W., Luo, X., Zhang, Q., He, X., Zhang, Z., & Wang, X. (2020). Bifidobacterium infantis relieves allergic asthma in mice by regulating Th1/Th2. Medical Science Monitor, 26, e920583.
pubmed: 32249275
pmcid: 7160606
Song, Z., Tu, C., & Wang, Y. (2020). Effect of nose sensitive pill (NSP) on serum IFN-gamma and il-4 levels in allergic rhinitis using rats model. Pakistan Journal of Pharmaceutical Sciences, 33(2), 611–614.
pubmed: 32276905
Lim, S. P., Costantini, B., Mian, S. A., Abellan, P. P., Gandhi, S., Llordella, M. M., Lim, S. P., Costantini, B., Mian, S. A., Perez Abellan, P., Gandhi, S., Martinez Llordella, M., Lozano, J. J., Antunes dos Reis, R., Povoleri, G. A. M., Mourikis, T. P., Abarrategi, A., Ariza-McNaughton, L., Heck, S., … Mufti, G. J. (2020). Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction. Blood, 136(7), 885–897.
doi: 10.1182/blood.2019001347
pubmed: 32294156
pmcid: 7532000
Winkler, I. G., Sims, N. A., Pettit, A. R., Barbier, V., Nowlan, B., Helwani, F., Winkler, I. G., Sims, N. A., Pettit, A. R., Barbier, V., Nowlan, B., Helwani, F., Poulton, I. J., van Rooijen, N., Alexander, K. A., Raggatt, L. J., & Lévesque, J.-P. (2010). Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 116(23), 4815–4828.
doi: 10.1182/blood-2009-11-253534
pubmed: 20713966
Levy-Barazany, H., Shachnai-Pinkas, L., Rodionov, G., Saar, A., Rosenzwaig, M., Gez, L., Levy-Barazany, H., Shachnai-Pinkas, L., Rodionov, G., Saar, A., Rosenzwaig, M., Gez, L., Rodin, A., Marelly, N., Abraham, M., Mishalian, I., Wildbaum, H., Katz, T., Baar, Y., … Stein, J. (2020). Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplantation, 55(7), 1305–1316.
doi: 10.1038/s41409-020-0941-2
pubmed: 32433499
pmcid: 7329633
Watanabe, K., Ambekar, C., Wang, H., Ciccolini, A., Schimmer, A. D., & Dror, Y. (2009). SBDS-deficiency results in specific hypersensitivity to Fas stimulation and accumulation of Fas at the plasma membrane. Apoptosis, 14(1), 77–89.
doi: 10.1007/s10495-008-0275-9
pubmed: 19009351
Georges, G. E., & Storb, R. (2016). Hematopoietic stem cell transplantation for acquired aplastic anemia. Current Opinion in Hematology, 23(6), 495–500.
doi: 10.1097/MOH.0000000000000281
pubmed: 27607445
pmcid: 5125541
den Ottolander, G. J., te Velde, J., Veenhof, W., Kleiverda, K., Haak, H. L., & Spaander, P. J. (1982). Busulphan aplasia in rabbits: A model for human aplastic anaemia. British Journal of Haematology, 51(2), 265–276.
doi: 10.1111/j.1365-2141.1982.tb02780.x
Morley, A., & Blake, J. (1974). An animal model of chronic aplastic marrow failure. I. Late marrow failure after busulfan. Blood, 44(1), 49–56.
doi: 10.1182/blood.V44.1.49.49
pubmed: 4834516
Shi, Z. J., Cheng, M., Liu, Y. C., Fan, X. R., Zhang, Y., & Wei, Y. (2020). Effect of chronic intermittent hypobaric hypoxia on heart rate variability in conscious rats. Clinical and Experimental Pharmacology and Physiology, 47(1), 60–66.
doi: 10.1111/1440-1681.13170
pubmed: 31454428
Cui, F., Hu, H. F., Guo, J., Sun, J., & Shi, M. (2020). The effect of autophagy on chronic intermittent hypobaric hypoxia ameliorating liver damage in metabolic syndrome rats. Frontiers in Physiology, 11, 13.
doi: 10.3389/fphys.2020.00013
pubmed: 32082187
pmcid: 7002389
Cui, F., Guo, J., Hu, H. F., Zhang, Y., & Shi, M. (2020). Chronic intermittent hypobaric hypoxia improves markers of iron metabolism in a model of dietary-induced obesity. Journal of Inflammation (London), 17(1), 36.
doi: 10.1186/s12950-020-00265-1
Siques, P., Brito, J., Flores, K., Ordenes, S., Arriaza, K., Pena, E., Siques, P., Brito, J., Flores, K., Ordenes, S., Arriaza, K., Pena, E., León-Velarde, F., López de Pablo, Á. L., Gonzalez, M. C., & Arribas, S. (2018). Long-term chronic intermittent hypobaric hypoxia induces glucose transporter (GLUT4) translocation through AMP-Activated protein kinase (AMPK) in the soleus muscle in lean rats. Frontiers in Physiology, 9, 799.
doi: 10.3389/fphys.2018.00799
pubmed: 30002630
pmcid: 6031730
Zhao, W., Zhang, Y., Zhang, P., Yang, J., Zhang, L., He, A., Zhao, W., Zhang, Y., Zhang, P., Yang, J., Zhang, L., He, A., Zhang, W., & Hideto, T. (2017). High programmed death 1 expression on T cells in aplastic anemia. Immunology Letters, 183, 44–51.
doi: 10.1016/j.imlet.2017.01.016
pubmed: 28153603
Xu, J., Wang, Y., Li, J., Zhang, X., Geng, Y., Huang, Y., et al. (2016). IL-12p40 impairs mesenchymal stem cell-mediated bone regeneration via CD4(+) T cells. Cell Death and Differentiation, 23(12), 1941–1951.
doi: 10.1038/cdd.2016.72
pubmed: 27472064
pmcid: 5136484
Sun, J., Liu, T., Yan, Y., Huo, K., Zhang, W., Liu, H., et al. (2018). The role of Th1/Th2 cytokines played in regulation of specific CD4 (+) Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scandinavian Journal of Immunology, 88(1), e12674.
doi: 10.1111/sji.12674
pubmed: 29752829
Tang, D., Liu, S., Sun, H., Qin, X., Zhou, N., Zheng, W., et al. (2020). All-trans-retinoic acid shifts Th1 towards Th2 cell differentiation by targeting NFAT1 signalling to ameliorate immune-mediated aplastic anaemia. British Journal of Haematology, 191(5), 906–919.
doi: 10.1111/bjh.16871
pubmed: 32729137
Liu, B., Zeng, L., Shao, Y., & Fu, R. (2021). Expression and function of SLAMF6 in CD8(+) T lymphocytes of patients with severe aplastic anemia. Cellular Immunology, 364, 104343.
doi: 10.1016/j.cellimm.2021.104343
pubmed: 33774556
Zheng, Q., Jiang, Y., Zhang, A., Cui, L., Xia, L., & Luo, M. (2017). The mechanism of mitochondria-mediated pathway in the apoptosis of platelets in immune-induced bone marrow failure. Chinese Journal of Physiology, 60(6), 338–344.
doi: 10.4077/CJP.2017.BAF484
pubmed: 29241307
Townsley, D. M., Dumitriu, B., & Young, N. S. (2014). Bone marrow failure and the telomeropathies. Blood, 124(18), 2775–2783.
doi: 10.1182/blood-2014-05-526285
pubmed: 25237198
pmcid: 4215309