Effect of Liraglutide on Osteoporosis in a Rat Model of Type 2 Diabetes Mellitus: A Histological, Immunohistochemical, and Biochemical Study.
OPG
RANKL
diabetes
liraglutide
osteoporosis
Journal
Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
ISSN: 1435-8115
Titre abrégé: Microsc Microanal
Pays: England
ID NLM: 9712707
Informations de publication
Date de publication:
13 Oct 2023
13 Oct 2023
Historique:
received:
08
06
2023
revised:
04
08
2023
accepted:
02
09
2023
medline:
13
10
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
aheadofprint
Résumé
Diabetic osteoporosis (DOP) is a diabetic complication associated with a significant disability rate. Liraglutide, a glucagon-like peptide-1 receptor agonist, is a promising and innovative drug for type 2 diabetes mellitus (T2DM), with potential therapeutic implications for bone disorders. This investigation examined the impact of liraglutide on osteoporosis in rats with T2DM and studied the influence of vitamin D receptor Bsm1 polymorphism on liraglutide-induced outcomes. Thirty rats were divided into control, T2DM induced by a combination of a high-fat diet and 25 mg/kg streptozotocin, and T2DM-liraglutide (T2DM treated with 0.4 mg/kg/day liraglutide) groups. After 8 weeks of liraglutide treatment, femurs and blood samples were obtained from all rats for subsequent investigations. Diabetes induced a remarkable rise in the serum levels of receptor activator of nuclear factor kappa B ligand (RANKL) and C-telopeptide of type I collagen (CTX-1) associated with a remarkable decline in osteocalcin and osteoprotegerin (OPG). Impaired bone architecture was also demonstrated by light and scanning electron microscopic study. The immune expression of OPG was down-regulated, while RANKL was up-regulated. Interestingly, the administration of liraglutide ameliorated the previous changes induced by diabetes mellitus. In conclusion, liraglutide can prevent DOP, mostly due to liraglutide's ability to increase bone growth, while inhibiting bone resorption.
Identifiants
pubmed: 37832035
pii: 7313494
doi: 10.1093/micmic/ozad102
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the Microscopy Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Déclaration de conflit d'intérêts
Conflict of Interest The authors declare that they have no competing interest.