Iron Oxide Nanoparticles with Supramolecular Ureido-Pyrimidinone Coating for Antimicrobial Peptide Delivery.
antimicrobial peptide
cytocompatibility
intracellular delivery
iron oxide nanoparticles
supramolecular system
ureido-pyrimidinone
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
27 Sep 2023
27 Sep 2023
Historique:
received:
03
09
2023
revised:
15
09
2023
accepted:
16
09
2023
medline:
23
10
2023
pubmed:
14
10
2023
entrez:
14
10
2023
Statut:
epublish
Résumé
Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g
Identifiants
pubmed: 37834098
pii: ijms241914649
doi: 10.3390/ijms241914649
pmc: PMC10573039
pii:
doi:
Substances chimiques
Antimicrobial Peptides
0
Pyrimidinones
0
Drug Carriers
0
Anti-Infective Agents
0
Ions
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : IGSSE
ID : 14.04
Organisme : Dutch Ministry of Education, Culture and Science
ID : 024.003.013
Organisme : Dutch Ministry of Education, Culture and Science
ID : 731.015.505
Organisme : the Dutch Antimicrobial Resistance Technology development and Biofilm Assessment Consortium
ID : DartBac
Références
Nature. 2008 May 8;453(7192):171-3
pubmed: 18464733
Sci China Life Sci. 2011 Sep;54(9):793-805
pubmed: 21922429
Chembiochem. 2009 Aug 17;10(12):2089-99
pubmed: 19591185
Int J Nanomedicine. 2012;7:3503-16
pubmed: 22848174
J Polym Sci A Polym Chem. 2018 Sep 1;56(17):1926-1934
pubmed: 30344368
Nat Chem. 2011 May;3(5):409-14
pubmed: 21505501
Theriogenology. 1999 Jun;51(8):1513-23
pubmed: 10729078
Adv Genet. 1955;7:1-46
pubmed: 13258371
Biomaterials. 2005 Jun;26(18):3995-4021
pubmed: 15626447
Asian J Pharm Sci. 2021 Jul;16(4):444-458
pubmed: 34703494
Pharm Res. 2009 Jan;26(1):244-9
pubmed: 18548338
Nanomaterials (Basel). 2020 Sep 11;10(9):
pubmed: 32932957
Angew Chem Int Ed Engl. 2007;46(8):1222-44
pubmed: 17278160
Adv Drug Deliv Rev. 2005 Jul 29;57(10):1514-27
pubmed: 15978698
Int J Nanomedicine. 2012;7:5577-91
pubmed: 23144561
Adv Mater. 2012 May 22;24(20):2703-9
pubmed: 22528786
Nano Life. 2010 Mar;1(1n02):
pubmed: 24348868
ACS Nano. 2016 Feb 23;10(2):1845-52
pubmed: 26811943
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12320-64
pubmed: 25294565
Adv Exp Med Biol. 2019;1117:281-298
pubmed: 30980363
Part Fibre Toxicol. 2012 Jun 14;9:20
pubmed: 22697169
Blood. 2007 Oct 15;110(8):3056-63
pubmed: 17595331
Chem Soc Rev. 2017 Oct 30;46(21):6621-6637
pubmed: 28991958
Nat Microbiol. 2016 Sep 12;1(11):16162
pubmed: 27617798
Physiol Meas. 2017 Jul 24;38(8):R183-R203
pubmed: 28480874
Acc Chem Res. 2017 Apr 18;50(4):659-668
pubmed: 28299927
Chem Soc Rev. 2017 Oct 30;46(21):6600-6620
pubmed: 28828455
Chem Commun (Camb). 2017 Feb 14;53(14):2279-2282
pubmed: 28154855
Biopolymers. 2000;55(1):4-30
pubmed: 10931439
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-1265
pubmed: 18558452
Mil Med Res. 2021 Sep 9;8(1):48
pubmed: 34496967
J Control Release. 2020 Apr 10;320:45-62
pubmed: 31923537
Chem Rev. 2008 Jun;108(6):2064-110
pubmed: 18543879
Sci Technol Adv Mater. 2015 Apr 28;16(2):023501
pubmed: 27877761
Int J Pharm Investig. 2012 Jan;2(1):2-11
pubmed: 23071954
Biopolymers. 2005;80(6):717-35
pubmed: 15880793
Pharmaceuticals (Basel). 2021 Apr 24;14(5):
pubmed: 33923229
Nature. 1998 Apr 30;392(6679 Suppl):5-10
pubmed: 9579855
Methods Mol Biol. 2017;1601:1-17
pubmed: 28470513
Contrast Media Mol Imaging. 2016 Jan-Feb;11(1):55-64
pubmed: 26234504
J Appl Microbiol. 2008 Jan;104(1):1-13
pubmed: 18171378
Nat Biotechnol. 2006 Dec;24(12):1551-7
pubmed: 17160061
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):15959-15972
pubmed: 33797220
Cell Cycle. 2012 May 1;11(9):1680-96
pubmed: 22510571
Int J Mol Sci. 2022 Nov 25;23(23):
pubmed: 36499070
Contrast Media Mol Imaging. 2009 Sep-Oct;4(5):207-19
pubmed: 19810053
J Multidiscip Healthc. 2021 Jul 05;14:1711-1724
pubmed: 34267523
Front Microbiol. 2020 Oct 16;11:582779
pubmed: 33178164
Biomacromolecules. 2019 Mar 11;20(3):1362-1374
pubmed: 30735368