Involvement of CCCTC-binding factor in epigenetic regulation of cancer.
CTCF
Cancer
Epigenetic regulation
Signaling pathways
Transcriptional aviator or repressor
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
13
09
2023
accepted:
03
10
2023
medline:
27
11
2023
pubmed:
16
10
2023
entrez:
15
10
2023
Statut:
ppublish
Résumé
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Identifiants
pubmed: 37840067
doi: 10.1007/s11033-023-08879-3
pii: 10.1007/s11033-023-08879-3
doi:
Substances chimiques
CCCTC-Binding Factor
0
Repressor Proteins
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
10383-10398Subventions
Organisme : Science and Engineering Research Board
ID : ECR/2016/000965
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Holliday R (1987) The inheritance of epigenetic defects. Science (New York) 238(4824):163–170. https://doi.org/10.1126/science.3310230
doi: 10.1126/science.3310230
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 4:62. https://doi.org/10.1038/s41392-019-0095-0
doi: 10.1038/s41392-019-0095-0
pubmed: 31871779
pmcid: 6915746
Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cells 54(5):716–727. https://doi.org/10.1016/j.molcel.2014.05.015
doi: 10.1016/j.molcel.2014.05.015
Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Polotskaja AV, Goodwin GH (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5’-flanking sequence of the chicken c-myc gene. Oncogene 5(12):1743–1753
pubmed: 2284094
Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98(3):387–396. https://doi.org/10.1016/s0092-8674(00)81967-4
doi: 10.1016/s0092-8674(00)81967-4
pubmed: 10458613
Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet: TIG 17(9):520–527. https://doi.org/10.1016/s0168-9525(01)02366-6
doi: 10.1016/s0168-9525(01)02366-6
pubmed: 11525835
Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6):1231–1245. https://doi.org/10.1016/j.cell.2006.12.048
doi: 10.1016/j.cell.2006.12.048
pubmed: 17382889
pmcid: 2572726
Chen H, Tian Y, Shu W, Bo X, Wang S (2012) Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7(7):e41374. https://doi.org/10.1371/journal.pone.0041374
doi: 10.1371/journal.pone.0041374
pubmed: 22829947
pmcid: 3400636
Franco MM, Prickett AR, Oakey RJ (2014) The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biol Reprod 91(5):125. https://doi.org/10.1095/biolreprod.114.122945
doi: 10.1095/biolreprod.114.122945
pubmed: 25297545
Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137(7):1194–1211. https://doi.org/10.1016/j.cell.2009.06.001
doi: 10.1016/j.cell.2009.06.001
pubmed: 19563753
pmcid: 3040116
Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360. https://doi.org/10.1016/S0070-2153(07)80009-3
doi: 10.1016/S0070-2153(07)80009-3
pubmed: 17950379
Ohlsson R, Lobanenkov V, Klenova E (2010) Does CTCF mediate between nuclear organization and gene expression? BioEssays: News Rev Mol Cell Deve Biol 32(1):37–50. https://doi.org/10.1002/bies.200900118
doi: 10.1002/bies.200900118
Razin SV, Gavrilov AA (2018) Structural-functional domains of the eukaryotic genome. Biochem Biokhimiia 83(4):302–312. https://doi.org/10.1134/S0006297918040028
doi: 10.1134/S0006297918040028
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021
doi: 10.1016/j.cell.2014.11.021
pubmed: 25497547
pmcid: 5635824
Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S (2015) Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10(8):1297–1309. https://doi.org/10.1016/j.celrep.2015.02.004
doi: 10.1016/j.celrep.2015.02.004
pubmed: 25732821
pmcid: 4542312
Xi W, Beer MA (2021) Loop competition and extrusion model predicts CTCF interaction specificity. Nat Commun 12(1):1046. https://doi.org/10.1038/s41467-021-21368-0
doi: 10.1038/s41467-021-21368-0
pubmed: 33594051
pmcid: 7886907
Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker J, Taylor J, Corces VG (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281–1295. https://doi.org/10.1016/j.cell.2013.04.053
doi: 10.1016/j.cell.2013.04.053
pubmed: 23706625
pmcid: 3712340
Mujahed H, Miliara S, Neddermeyer A, Bengtzén S, Nilsson C, Deneberg S, Cordeddu L, Ekwall K, Lennartsson A, Lehmann S (2020) AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding. Blood 136(3):339–352. https://doi.org/10.1182/blood.2019002326
doi: 10.1182/blood.2019002326
pubmed: 32232485
Guo YA, Chang MM, Huang W, Ooi WF, Xing M, Tan P, Skanderup AJ (2018) Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 9(1):1520. https://doi.org/10.1038/s41467-018-03828-2
doi: 10.1038/s41467-018-03828-2
pubmed: 29670109
pmcid: 5906695
Eldholm V, Haugen A, Zienolddiny S (2014) CTCF mediates the TERT enhancer-promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene. Int J Cancer 134(10):2305–2313. https://doi.org/10.1002/ijc.28570
doi: 10.1002/ijc.28570
pubmed: 24174344
Velázquez-Hernández N, Reyes-Romero MA, Barragán-Hernández M, Guerrero-Romero F, Rodríguez-Moran M, Aguilar-Durán M, Lazalde Medina B (2015) BORIS and CTCF are overexpressed in squamous intraepithelial lesions and cervical cancer. Genet Mol Res: GMR 14(2):6094–6100. https://doi.org/10.4238/2015.June.8.7
doi: 10.4238/2015.June.8.7
pubmed: 26125810
Recillas-Targa F, de la Rosa-Velázquez IA, Soto-Reyes E (2011) Insulation of tumor suppressor genes by the nuclear factor CTCF. Biochem Cell Biol 89(5):479–488. https://doi.org/10.1139/o11-031
doi: 10.1139/o11-031
pubmed: 21846316
Damaschke NA, Gawdzik J, Avilla M, Yang B, Svaren J, Roopra A, Luo JH, Yu YP, Keles S, Jarrard DF (2020) CTCF loss mediates unique DNA hypermethylation landscapes in human cancers. Clin Epigenet 12(1):80. https://doi.org/10.1186/s13148-020-00869-7
doi: 10.1186/s13148-020-00869-7
Rahme GJ, Javed NM, Puorro KL, Xin S, Hovestadt V, Johnstone SE, Bernstein BE (2023) Modeling epigenetic lesions that cause gliomas. Cell 186(17):3674-3685.e14. https://doi.org/10.1016/j.cell.2023.06.022
doi: 10.1016/j.cell.2023.06.022
pubmed: 37494934
Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36. https://doi.org/10.1093/carcin/bgp220
doi: 10.1093/carcin/bgp220
pubmed: 19752007
Phillips T (2008) The role of methylation in gene expression. Nature Educ 1(1):116
Dhar GA, Saha S, Mitra P, Nag Chaudhuri R (2021) DNA methylation and regulation of gene expression: guardian of our health. The Nucleus: Int J Cytol Allied Topics 64(3):259–270. https://doi.org/10.1007/s13237-021-00367-y
doi: 10.1007/s13237-021-00367-y
Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220. https://doi.org/10.1038/nrg2719
doi: 10.1038/nrg2719
pubmed: 20142834
pmcid: 3034103
Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153(1):193–205. https://doi.org/10.1016/j.cell.2013.02.033
doi: 10.1016/j.cell.2013.02.033
pubmed: 23540698
pmcid: 4035305
Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in arabidopsis. Nat Struct Mol Biol 21(1):64–72. https://doi.org/10.1038/nsmb.2735
doi: 10.1038/nsmb.2735
pubmed: 24336224
Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166. https://doi.org/10.1146/annurev-genet-102108-134205
doi: 10.1146/annurev-genet-102108-134205
pubmed: 19659441
pmcid: 3137514
Xu Q, Wu L, Luo Z, Zhang M, Lai J, Li L, Springer NM, Li Q (2022) DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biol 23(1):77. https://doi.org/10.1186/s13059-022-02641-x
doi: 10.1186/s13059-022-02641-x
pubmed: 35264226
pmcid: 8905802
Waters R, van Eijk P, Reed S (2015) Histone modification and chromatin remodeling during NER. DNA Repair 36:105–113. https://doi.org/10.1016/j.dnarep.2015.09.013
doi: 10.1016/j.dnarep.2015.09.013
pubmed: 26422133
Petty E, Pillus L (2013) Balancing chromatin remodeling and histone modifications in transcription. Trends in genetics: TIG 29(11):621–629. https://doi.org/10.1016/j.tig.2013.06.006
doi: 10.1016/j.tig.2013.06.006
pubmed: 23870137
Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22
doi: 10.1038/cr.2011.22
pubmed: 21321607
pmcid: 3193420
Munshi A, Shafi G, Aliya N, Jyothy A (2009) Histone modifications dictate specific biological readouts. J Genet Genom 36(2):75–88. https://doi.org/10.1016/S1673-8527(08)60094-6
doi: 10.1016/S1673-8527(08)60094-6
Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9
doi: 10.1038/s41580-020-00315-9
pubmed: 33353982
Dueva R, Akopyan K, Pederiva C, Trevisan D, Dhanjal S, Lindqvist A, Farnebo M (2019) Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure. Cell Chem Biol 26(10):1436-1449.e5. https://doi.org/10.1016/j.chembiol.2019.08.002
doi: 10.1016/j.chembiol.2019.08.002
pubmed: 31447351
Nair SS, Kumar R (2012) Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 6(6):611–619. https://doi.org/10.1016/j.molonc.2012.09.005
doi: 10.1016/j.molonc.2012.09.005
pubmed: 23127546
pmcid: 3538127
Kar S, Patra SK (2018) Overexpression of Oct4 induced by expressive histone modification marks play crucial role in breast cancer progression. Gene 643:35–45
doi: 10.1016/j.gene.2017.11.077
pubmed: 29203199
Shilpi A, Parbin S, Sengupta D, Kar S, Deb M, Rath SK, Rakshit M, Patra SK (2015) Molecular mechanisms of DNA methyltransferase-Inhibitor interactions: procyanidin B2 shows promise for therapeutic intervention of cancer. Chem Biol Interaction 233:122–138
doi: 10.1016/j.cbi.2015.03.022
Sengupta D, Deb M, Kar S, Shilpi A, Parbin S, Pradhan N, Patra SK (2019) MiR-193a targets MLL1 mRNA and drastically decreases MLL1 protein production: ectopic expression of the miRNA aberrantly lowers H3K4me3 content of the chromatin and hampers cell proliferation and viability. Gene 705:22–35
doi: 10.1016/j.gene.2019.04.046
pubmed: 31005612
Pradhan N, Parbin S, Kar S, Das L, Kirtana R, Seshadri GS, Sengupta D, Deb M, Kausar C, Patra SK (2019) Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: ectopic application of hydrogen peroxide represses CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. BBA Mol Basis Dis 1865(6):1651–1665
doi: 10.1016/j.bbadis.2019.04.002
Shilpi A, Bi Y, Jung S, Patra SK, Davuluri RV (2017) Identification of genetic and epigenetic variants associated with breast cancer prognosis by integrative bioinformatics analysis. Cancer Informatics 16:1–13
doi: 10.4137/CIN.S39783
pubmed: 28096648
pmcid: 5224237
Kar S, Niharika, Roy A, Patra SK (2023) Overexpression of SOX2 gene by histone modifications: SOX2 enhances human prostate and breast cancer progression by prevention of apoptosis and enhancing cell proliferation. Oncology 101(9):591–608. https://doi.org/10.1159/000531195
doi: 10.1159/000531195
pubmed: 37549026
Niharika RA, Mishra J, Chakraborty S, Singh SP, Patra SK (2023) Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. Prog Mol Biol Transl Sci 197:241–260. https://doi.org/10.1016/bs.pmbts.2023.01.010
doi: 10.1016/bs.pmbts.2023.01.010
pubmed: 37019595
Kar S, Deb M, Sengupta D, Pradhan N, Patra SK (2017) SOX2 function and Hedgehog signaling pathway are co-conspirators in promoting Androgen independent prostate cancer. BBA Mol Basis Dis 1863(1):253–265
doi: 10.1016/j.bbadis.2016.11.001
Pradhan N, Parbin S, Kausar C, Kar S, Mawatwal S, Das L, Sengupta D, Deb M, Dhiman R, Patra SK (2019) Paederia foetida induces anticancer activity by modulating DNA methylation and altering pro-inflammatory cytokine gene expression in human prostate cancer. Food Chem Toxicol 130:161–173
doi: 10.1016/j.fct.2019.05.016
pubmed: 31112703
Parbin S, Pradhan N, Das L, Saha P, Deb M, Sengupta D, Patra SK (2019) DNA methylation regulates Microtubule-associated tumor suppressor 1 in human non-small cell lung carcinoma. Exp Cell Res 374(2):323–332
doi: 10.1016/j.yexcr.2018.12.004
pubmed: 30528566
Kar S, Sengupta D, Deb M, Shilpi A, Parbin S, Rath SK, Pradhan N, Rakshit M, Patra SK (2014) Expression profiling of DNA methylation mediated epigenetic gene-silencing factors in breast cancer. Clin Epigenet 6:20
doi: 10.1186/1868-7083-6-20
Sengupta D, Deb M, Kar S, Shilpi A, Pradhan N, Parbin S, Kirtana R, Singh SP, Suma SG, Niharika RA, Manna S, Saha P, Chakraborty P, Dash S, Kausar C, Patra SK (2021) Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 72:46–64
doi: 10.1016/j.semcancer.2020.05.017
pubmed: 32497683
Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK (2022) PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 1868(9):166428. https://doi.org/10.1016/j.bbadis.2022.166428
doi: 10.1016/j.bbadis.2022.166428
pubmed: 35533906
Deb M, Sengupta D, Kar S, Rath SK, Roy S, Das G, Patra SK (2016) Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene 581:75–84
doi: 10.1016/j.gene.2016.01.029
pubmed: 26794448
Parbin S, Shilpi A, Kar S, Pradhan N, Sengupta D, Deb M, Rath SK, Patra SK (2016) Insights on molecular interactions of thymoquinone with histone deacetylase: evaluation of therapeutic intervention potential against breast cancer. Mol BioSyst 12:48–58
doi: 10.1039/C5MB00412H
pubmed: 26540192
Deb M, Sengupta D, Rath SK, Parbin S, Kar S, Shilpi A, Bhutia S, Roy S, Patra SK (2015) Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. BBA Mol Basis Dis 1852:1630–1645
doi: 10.1016/j.bbadis.2015.04.021
Sengupta D, Deb M, Patra SK (2018) Antagonistic activities of miR-148a and DNMT1: ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene 660:68–79
doi: 10.1016/j.gene.2018.03.075
pubmed: 29596883
Roy A, Niharika CS, Mishra J, Singh SP, Patra SK (2023) Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. Prog Mol Biol Transl Sci 197:261–302
doi: 10.1016/bs.pmbts.2023.01.011
pubmed: 37019596
Kim S, Yu NK, Kaang BK (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 47(6):e166. https://doi.org/10.1038/emm.2015.33
doi: 10.1038/emm.2015.33
pubmed: 26045254
pmcid: 4491725
Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15(4):234–246. https://doi.org/10.1038/nrg3663
doi: 10.1038/nrg3663
pubmed: 24614316
pmcid: 4610363
Holwerda SJ, de Laat W (2013) CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philos Trans R Soc London Ser B Biol Sci 368(1620):20120369. https://doi.org/10.1098/rstb.2012.0369
doi: 10.1098/rstb.2012.0369
Phillips-Cremins JE, Corces VG (2013) Chromatin insulators: linking genome organization to cellular function. Mol Cell 50(4):461–474. https://doi.org/10.1016/j.molcel.2013.04.018
doi: 10.1016/j.molcel.2013.04.018
pubmed: 23706817
pmcid: 3670141
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. https://doi.org/10.1038/nature11049
doi: 10.1038/nature11049
pubmed: 22495304
pmcid: 3555144
Fang C, Wang Z, Han C, Safgren SL, Helmin KA, Adelman ER, Serafin V, Basso G, Eagen KP, Gaspar-Maia A, Figueroa ME, Singer BD, Ratan A, Ntziachristos P, Zang C (2020) Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol 21(1):247. https://doi.org/10.1186/s13059-020-02152-7
doi: 10.1186/s13059-020-02152-7
pubmed: 32933554
pmcid: 7493976
Hnisz D, Schuijers J, Li CH, Young RA (2018) Regulation and dysregulation of chromosome structure in cancer. Ann Rev Cancer Biol 2:19–40. https://doi.org/10.1146/annurev-cancerbio-030617-050134
doi: 10.1146/annurev-cancerbio-030617-050134
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP (2023) Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 42(4):112373. https://doi.org/10.1016/j.celrep.2023.112373
doi: 10.1016/j.celrep.2023.112373
pubmed: 37060567
Freeman DM, Wang Z (2020) Epigenetic vulnerability of insulator CTCF motifs at Parkinson’s disease-associated genes in response to neurotoxicant rotenone. Front Genet 11:627. https://doi.org/10.3389/fgene.2020.00627
doi: 10.3389/fgene.2020.00627
pubmed: 32774342
pmcid: 7381335
Massa AT, Mousel MR, Herndon MK, Herndon DR, Murdoch BM, White SN (2021) Genome-wide histone modifications and CTCF enrichment predict gene expression in sheep macrophages. Front Genet 11:612031. https://doi.org/10.3389/fgene.2020.612031
doi: 10.3389/fgene.2020.612031
pubmed: 33488675
pmcid: 7817998
Narendra V, Bulajić M, Dekker J, Mazzoni EO, Reinberg D (2016) CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev 30(24):2657–2662. https://doi.org/10.1101/gad.288324.116
doi: 10.1101/gad.288324.116
pubmed: 28087711
pmcid: 5238725
Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, Bozzoni I, Tartaglia GG, Brun C (2018) Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res 46(2):917–928. https://doi.org/10.1093/nar/gkx1169
doi: 10.1093/nar/gkx1169
pubmed: 29165713
Geybels MS, Zhao S, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng Z, Stanford JL (2015) Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 75(16):1941–1950. https://doi.org/10.1002/pros.23093
doi: 10.1002/pros.23093
pubmed: 26383847
pmcid: 4928710
Wang J, Wang J, Yang L, Zhao C, Wu LN, Xu L, Zhang F, Weng Q, Wegner M, Lu QR (2020) CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair. Nat Commun 11(1):4133. https://doi.org/10.1038/s41467-020-17955-2
doi: 10.1038/s41467-020-17955-2
pubmed: 32807777
pmcid: 7431862
Torres C, Grippo PJ (2018) Pancreatic cancer subtypes: a roadmap for precision medicine. Ann Med 50(4):277–287. https://doi.org/10.1080/07853890.2018.1453168
doi: 10.1080/07853890.2018.1453168
pubmed: 29537309
Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114. https://doi.org/10.1038/nature16490
doi: 10.1038/nature16490
pubmed: 26700815
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science (New York) 356(6337):eaaj2239. https://doi.org/10.1126/science.aaj2239
doi: 10.1126/science.aaj2239
Klenova EM, Morse HC 3rd, Ohlsson R, Lobanenkov VV (2002) The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12(5):399–414. https://doi.org/10.1016/s1044-579x(02)00060-3
doi: 10.1016/s1044-579x(02)00060-3
pubmed: 12191639
Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA, Cui H, Niemitz EL, Rasko JE, Docquier FM, Kistler M, Breen JJ, Zhuang Z, Quitschke WW, Renkawitz R, Klenova EM et al (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 99(10):6806–6811. https://doi.org/10.1073/pnas.092123699
doi: 10.1073/pnas.092123699
pubmed: 12011441
pmcid: 124484
Hong JA, Kang Y, Abdullaev Z, Flanagan PT, Pack SD, Fischette MR, Adnani MT, Loukinov DI, Vatolin S, Risinger JI, Custer M, Chen GA, Zhao M, Nguyen DM, Barrett JC, Lobanenkov VV, Schrump DS (2005) Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Can Res 65(17):7763–7774. https://doi.org/10.1158/0008-5472.CAN-05-0823
doi: 10.1158/0008-5472.CAN-05-0823
Dziadziuszko R, Witta SE, Cappuzzo F, Park S, Tanaka K, Danenberg PV, Barón AE, Crino L, Franklin WA, Bunn PA Jr, Varella-Garcia M, Danenberg KD, Hirsch FR (2006) Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 12(10):3078–3084. https://doi.org/10.1158/1078-0432.CCR-06-0106
doi: 10.1158/1078-0432.CCR-06-0106
Verma M, Srivastava S (2002) Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 3(12):755–763. https://doi.org/10.1016/s1470-2045(02)00932-4
doi: 10.1016/s1470-2045(02)00932-4
pubmed: 12473517
Vatolin S, Abdullaev Z, Pack SD, Flanagan PT, Custer M, Loukinov DI, Pugacheva E, Hong JA, Morse H, Schrump DS, Risinger JI, CarlBarrett J, Lobanenkov VV (2005) Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 65(17):7751–7762. https://doi.org/10.1158/0008-5472.CAN-05-0858
doi: 10.1158/0008-5472.CAN-05-0858
pubmed: 16140943
Sung HJ, Cho JY (2008) Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep 41(9):615–625. https://doi.org/10.5483/bmbrep.2008.41.9.615
doi: 10.5483/bmbrep.2008.41.9.615
pubmed: 18823584
Liotta LA, Petricoin EF (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J Clin Investig 116(1):26–30. https://doi.org/10.1172/JCI27467
doi: 10.1172/JCI27467
pubmed: 16395400
pmcid: 1323272
Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Lilja H, Brogi E, Boyd J, Sanchez-Carbayo M, Holland EC, Cordon-Cardo C, Scher HI, Tempst P (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Investig 116(1):271–284. https://doi.org/10.1172/JCI26022
doi: 10.1172/JCI26022
pubmed: 16395409
pmcid: 1323259
Verma M, Kagan J, Sidransky D, Srivastava S (2003) Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 3(10):789–795. https://doi.org/10.1038/nrc1192
doi: 10.1038/nrc1192
pubmed: 14570046
Lee JT (2003) Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr Biol: CB 13(6):R242–R254. https://doi.org/10.1016/s0960-9822(03)00162-3
doi: 10.1016/s0960-9822(03)00162-3
pubmed: 12646153
Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16(6):2802–2813. https://doi.org/10.1128/MCB.16.6.2802
doi: 10.1128/MCB.16.6.2802
pubmed: 8649389
pmcid: 231272
Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science (New York) 303(5655):238–240. https://doi.org/10.1126/science.1090934
doi: 10.1126/science.1090934
Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science (New York) 312(5771):269–272. https://doi.org/10.1126/science.1123191
doi: 10.1126/science.1123191
Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD, Disteche CM (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8(1):31–42. https://doi.org/10.1016/j.devcel.2004.10.018
doi: 10.1016/j.devcel.2004.10.018
pubmed: 15669143
Felsenfeld G, Burgess-Beusse B, Farrell C, Gaszner M, Ghirlando R, Huang S, Jin C, Litt M, Magdinier F, Mutskov V, Nakatani Y, Tagami H, West A, Yusufzai T (2004) Chromatin boundaries and chromatin domains. Cold Spring Harb Symp Quant Biol 69:245–250. https://doi.org/10.1101/sqb.2004.69.245
doi: 10.1101/sqb.2004.69.245
pubmed: 16117655
Shin HY (2019) The structural and functional roles of CTCF in the regulation of cell type-specific and human disease-associated super-enhancers. Genes Genom 41(3):257–265. https://doi.org/10.1007/s13258-018-0768-z
doi: 10.1007/s13258-018-0768-z
Zhang P, Wu Y, Zhou H, Zhou B, Zhang H, Wu H (2022) CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types. Bioinformatics (Oxford, England) 38(19):4497–4504. https://doi.org/10.1093/bioinformatics/btac575
doi: 10.1093/bioinformatics/btac575
pubmed: 35997565
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D et al (2023) Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. Patterns (New York) 4(8):100798. https://doi.org/10.1016/j.patter.2023.100798
doi: 10.1016/j.patter.2023.100798
Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A, Ohlsson R, Lobanenkov VV (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol: CB 10(14):853–856. https://doi.org/10.1016/s0960-9822(00)00597-2
doi: 10.1016/s0960-9822(00)00597-2
pubmed: 10899010
Fiorito E, Sharma Y, Gilfillan S, Wang S, Singh SK, Satheesh SV, Katika MR, Urbanucci A, Thiede B, Mills IG, Hurtado A (2016) CTCF modulates estrogen receptor function through specific chromatin and nuclear matrix interactions. Nucleic Acids Res 44(22):10588–10602. https://doi.org/10.1093/nar/gkw785
doi: 10.1093/nar/gkw785
pubmed: 27638884
pmcid: 5159541
Nanan KK, Sturgill DM, Prigge MF, Thenoz M, Dillman AA, Mandler MD, Oberdoerffer S (2019) TET-catalyzed 5-carboxylcytosine promotes CTCF binding to suboptimal sequences genome-wide. iScience 19:326–339. https://doi.org/10.1016/j.isci.2019.07.041
doi: 10.1016/j.isci.2019.07.041
pubmed: 31404833
pmcid: 6699469
Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B, Fuchs J, Dürnberger G, Tang W, Ladurner R, Stocsits RR, Busslinger GA, Novák B, Mechtler K, Davidson IF, Ellenberg J, Peters JM (2019) Absolute quantification of cohesin, CTCF and their regulators in human cells. Elife 8:e46269. https://doi.org/10.7554/eLife.46269
doi: 10.7554/eLife.46269
pubmed: 31204999
pmcid: 6606026
Witcher M, Emerson BM (2009) Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell 34(3):271–284. https://doi.org/10.1016/j.molcel.2009.04.001
doi: 10.1016/j.molcel.2009.04.001
pubmed: 19450526
pmcid: 2723750
Majumder P, Gomez JA, Chadwick BP, Boss JM (2008) The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J Exp Med 205(4):785–798. https://doi.org/10.1084/jem.20071843
doi: 10.1084/jem.20071843
pubmed: 18347100
pmcid: 2292219
Wang Q, Huang C, Ding Y, Wen S, Wang X, Guo S, Gao Q, Chen Z, Zhao Y, Wang M, Shen B, Zhu W (2022) Inhibition of CCCTC binding factor-programmed cell death ligand 1 axis suppresses emergence of chemoresistance induced by gastric cancer-derived mesenchymal stem cells. Front Immunol 13:884373. https://doi.org/10.3389/fimmu.2022.884373
doi: 10.3389/fimmu.2022.884373
pubmed: 35572560
pmcid: 9095388
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K (2022) Nuclear envelope, chromatin organizers, histones, and DNA: the many achilles heels exploited across cancers. Front Cell Deve Biol 10:1068347. https://doi.org/10.3389/fcell.2022.1068347
doi: 10.3389/fcell.2022.1068347
El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576. https://doi.org/10.1053/j.gastro.2007.04.061
doi: 10.1053/j.gastro.2007.04.061
pubmed: 17570226
Zhang B, Zhang Y, Zou X, Chan AW, Zhang R, Lee TK, Liu H, Lau EY, Ho NP, Lai PB, Cheung YS, To KF, Wong HK, Choy KW, Keng VW, Chow LM, Chan KK, Cheng AS, Ko BC (2017) The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma. J Pathol 243(4):418–430. https://doi.org/10.1002/path.4976
doi: 10.1002/path.4976
pubmed: 28862757
pmcid: 5725705
Toyoda Y, Takada T, Suzuki H (2019) Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Front Pharmacol 10:208. https://doi.org/10.3389/fphar.2019.00208
doi: 10.3389/fphar.2019.00208
pubmed: 30890942
pmcid: 6411714
Lai Q, Li Q, He C, Fang Y, Lin S, Cai J, Ding J, Zhong Q, Zhang Y, Wu C, Wang X, He J, Liu Y, Yan Q, Li A, Liu S (2020) CTCF promotes colorectal cancer cell proliferation and chemotherapy resistance to 5-FU via the P53-Hedgehog axis. Aging 12(16):16270–16293. https://doi.org/10.18632/aging.103648
doi: 10.18632/aging.103648
pubmed: 32688344
pmcid: 7485712
Kakani P, Dhamdhere SG, Pant D, Mishra J, Samaiya A, Shukla S (2023) Hypoxia-induced CTCF mediates alternative splicing via coupling chromatin looping and RNA Pol II pause to promote EMT in breast cancer. bioRxiv. https://doi.org/10.1101/2023.05.06.539689
doi: 10.1101/2023.05.06.539689
Segueni J, Noordermeer D (2022) CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 20:2685–2698. https://doi.org/10.1016/j.csbj.2022.05.044
doi: 10.1016/j.csbj.2022.05.044
pubmed: 35685367
pmcid: 9166472
Debaugny RE, Skok JA (2020) CTCF and CTCFL in cancer. Curr Opin Genet Dev 61:44–52. https://doi.org/10.1016/j.gde.2020.02.021
doi: 10.1016/j.gde.2020.02.021
pubmed: 32334335
pmcid: 7893514
Docquier F, Farrar D, D’Arcy V, Chernukhin I, Robinson AF, Loukinov D, Vatolin S, Pack S, Mackay A, Harris RA, Dorricott H, O’Hare MJ, Lobanenkov V, Klenova E (2005) Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis. Can Res 65(12):5112–5122. https://doi.org/10.1158/0008-5472.CAN-03-3498
doi: 10.1158/0008-5472.CAN-03-3498
Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 5(7):e11457. https://doi.org/10.1371/journal.pone.0011457
doi: 10.1371/journal.pone.0011457
pubmed: 20625516
pmcid: 2897894
Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 105(24):8309–8314. https://doi.org/10.1073/pnas.0801273105
doi: 10.1073/pnas.0801273105
pubmed: 18550811
pmcid: 2448833
Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T, Välimäki N, Gylfe AE, Ristolainen H, Hänninen UA, Cajuso T, Kondelin J, Tanskanen T, Mecklin JP, Järvinen H, Renkonen-Sinisalo L, Lepistö A, Kaasinen E, Kilpivaara O, Tuupanen S, Enge M et al (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47(7):818–821. https://doi.org/10.1038/ng.3335
doi: 10.1038/ng.3335
pubmed: 26053496